KEY FOR PHDSTAT (Entrance Test held dated on
07.01.2024)

Ph. D. (Statistics) Entrance Test, July, 2023

GENERAL INSTRUCTIONS

1. All questions are compulsory. Each question carries $\mathbf{1}$ mark.
2. No cell phones, calculators, books, slide-rules, notebooks or written notes, etc. will be allowed inside the examination hall.
3. You should follow the instructions given by the Centre Superintendent and by the Invigilator at the examination venue. If you violate the instructions, you will be disqualified.
4. Any candidate found copying or receiving or giving assistance in the examination will be disqualified.
5. The Question Booklet and the OMR Response Sheet (Answer Sheet) would be supplied to you by the Invigilators. After the examination is over, you should hand over the OMR Response Sheet and Question Booklet to the Invigilator before leaving the examination hall. Any candidate who does not return the OMR Response Sheet will be disqualified and the University may take further action against him/her.
6. All rough work is to be done on the question paper itself and not on any other paper. Scrap paper is not permitted. For arriving at answers you may work in the margins, make some markings or underline in the test booklet itself.
7. The University reserves the right to cancel the result of any candidate who impersonates or uses/adopts other malpractices or uses any unfair means. The University may also follow a procedure to verify the validity of scores of all examinees uniformly. If there is substantial indication that your performance is not genuine, the University may cancel your result.

How to fill up the information on the OMR Response Sheet (Examination Answer Sheet)

1. Write your complete Enrolment No. in 10 digits. This should correspond to the enrolment number indicated by you on the OMR Response Sheet. Also write your correct name, address with pin code in the space provided. Put your signatures on the OMR Response Sheet with date. Ensure that the Invigilator in your examination hall also puts his signatures with date on the OMR Response Sheet at the space provided.
2. On the OMR Response Sheet student's particulars are to be filled in by blue/black ball pen also. Use blue/black ball pen for writing the Enrolment No. and Examination Centre Code as well as for blackening the circle bearing the correct answer number against the serial number of the question.
3. Do not make any stray remarks on this sheet.
4. Write correct information in numerical digits in Enrolment No. and Examination Centre Code Columns. The corresponding circle should be dark enough and should be filled in completely.
5. Each question is followed by four probable answers which are numbered (1), (2), (3) and (4). You should select and show only one answer to each question considered by you as the most appropriate or the correct answer. Select the most appropriate answer. Then by using blue/black ball pen, blacken the circle bearing the correct answer number against the serial number of the question.
6. No credit will be given if more than one answer is given for one question. Therefore, you should select the most appropriate answer.
7. You should not spend too much time on one question. If you find any particular question difficult, leave it and go to the next. If you have time left after answering all the questions, you may go back to the unanswered question.
8. There is no negative marking for wrong answers.
9. The average annual rainfall (in mm) for 5 years in a country is given below :

Year	Average Rainfall
2018	128
2019	130
2020	122
2021	124
2022	120

The given data series is categorised as :
(1) Individual Series
(2) Continuous Series
(3) Discrete Series
(4) Time Series
2. Which of the following is most likely a continuous quantitative variable ?
(1) Total runs scored by a batsman in the Cricket World Cup
(2) Population of India
(3) Number of televisions sold by electronics store
(4) Time taken to complete the entrance examination
3. The probability of drawing a sample of 10 units out of 100 units using SRSWOR is :
(1) $\frac{1}{10!}$
(2) $\frac{1}{100}$
(3) $\frac{1}{{ }^{100} \mathrm{C}_{10}}$
(4) $\frac{10}{100}$
4. Mean of sampling distribution of a statistic is called :
(1) Sampling Error
(2) Type-I Error
(3) Non-sampling Error
(4) None of these
5. The sample selection procedure used to select cricket team for the world cup is :
(1) Random sampling
(2) Systematic sampling
(3) Purposive sampling
(4) Cluster sampling
6. If a sample is selected with the hit-and-miss approach, the sampling method is called :
(1) Convenience or Accidental sampling
(2) Purposive sampling
(3) Stratified sampling
(4) Systematic sampling
7. Which one of the following is true for the sampling error?
(1) Sampling error is equal to population mean.
(2) It is difference between the sample statistic and the population parameter.
(3) It is always positive.
(4) It is always negative.
8. Which of the following is NOT a type of non-sampling error ?
(1) Measurement error
(2) Non-response error
(3) Processing error
(4) Mean squared error
9. Which ONE of the following is the main problem with non-probability sampling techniques?
(1) Methods are expensive
(2) Results are never representative
(3) Human bias
(4) Responders can refuse to participate
10. Let \bar{y}_{1} be the sample mean under SRSWOR and \bar{y}_{2} under SRSWR for estimating the population mean $\overline{\mathrm{Y}}$, then :
(1) $\operatorname{Var}\left(\bar{y}_{1}\right)=\operatorname{Var}\left(\bar{y}_{2}\right)$
(2) $\operatorname{Var}\left(\bar{y}_{1}\right)=1 / \operatorname{Var}\left(\bar{y}_{2}\right)$
(3) $\operatorname{Var}\left(\bar{y}_{1}\right) \leq \operatorname{Var}\left(\bar{y}_{2}\right)$
(4) $\operatorname{Var}\left(\bar{y}_{1}\right) \geq \operatorname{Var}\left(\bar{y}_{2}\right)$
11. An appropriate sampling procefure to select a sample containing n units which possesses a rare attribute, is :
(1) SRSWOR
(2) Stratified sampling
(3) Inverse sampling
(4) All of these

PHDSTAT
(4)
12. Which of the following is the lowest possible form of the Latin square design ?
(1) (1×1)
(2) (2×2)
(3) (3×3)
(4) (4×4)
13. A sample is drawn from sequentially numbered Delhi metro pillars with a random starting point, then every 10th pillar, he/she has thus drawn a \qquad sample.
(1) Simple Random
(2) Sequential
(3) Stratified
(4) Systematic
14. The data taken from the portal of the 'India Meteorological Department, Government of India' will be considered as :
(1) Primary data
(2) Secondary data
(3) Both (1) and (2) above
(4) Neither Primary nor Secondary data
15. The sampling procedure in which the population of locality is first divided into homogeneous groups and then a random sample is drawn from each group is called :
(1) Probability Sampling
(2) Simple Random Sampling
(3) Stratified Sampling
(4) Cluster Sampling
16. Suppose 2 products are selected at random without replacement out of 10 products, then the number of all possible random samples will be :
(1) 45
(2) 40
(3) 201
(4) 5
17. Which of the following variables cannot take all possible values within a certain range ?
(1) Discrete variable
(2) Continuous variable
(3) Intervening variable
(4) Extraneous variable
18. Which of the following graphical representation involve the plotting of cumulative frequency that may be cumulated downward or upward ?
(1) Frequency polygon
(2) Line graph
(3) Histogram
(4) Ogive
19. Which of the following measurement scale is the most appropriate to describe the time taken to finish entrance exam of the Ph.D. in Statistics?
(1) Nominal
(2) Ordinal
(3) Interval
(4) Ratio
20. If a random variable $\mathrm{X} \sim \operatorname{Bin}(48,3 / 4)$ then standard deviation of the random variable X will be :
(1) $\sqrt{3}$
(2) $\frac{3}{4} \log 48$
(3) 3
(4) $48 \log \frac{3}{4}$
21. If a random variable $X \sim N(40,4)$ and expected value of X is 40 , then median of X is :
(1) 36
(2) 44
(3) 38
(4) 40
22. If a random variable $X \sim \operatorname{Pois}(3)$ then $P(X=2)$ will be equal to :
(1) $\frac{9}{2} e^{-2}$
(2) $\frac{9}{2} e^{-3}$
(3) $\frac{2}{9} e^{-2}$
(4) $\frac{2}{9} e^{-3}$
23. If a random variable $X \sim N(40,9)$ then $P(X=2)$ will be equal to :
(1) $\frac{9}{40}$
(2) 0
(3) $\frac{40}{81}$
(4) $\frac{81}{1600}$
24. If each observation of a set is divided by 2 , then the mean of new values :
(1) is two times of original mean
(2) is decreased by 2
(3) is half of the original mean
(4) remains the same
25. Geometric mean is better than other means when the data are :
(1) positive as well as negative
(2) in ratios or percentages
(3) binary
(4) on interval scale
26. The correct relationship between A.M., G.M. and H.M. is :
(1) A.M. $=$ G.M. $=$ H.M.
(2) G.M. \geq A.M. \geq H.M.
(3) H.M. \geq G.M. \geq A.M.
(4) A.M. \geq G.M. \geq H.M.
27. Two series having the same mean, median and mode may :
(1) have same values
(2) not have same values
(3) Both (1) and (2)
(4) None of both (1) and (2)
28. In case of weighted mean, the accuracy or utility of the mean :
(1) Decreases
(2) Increases
(3) Remains unaffected
(4) None of these
29. Which one of the given measures of dispersion is considered best ?
(1) Standard deviation
(2) Range
(3) Variance
(4) Coefficient of variation
30. For a symmetrical distribution, $M d+$ Q.D. covers (as $M d=M e d i a n ~ a n d$ Q.D. = Quartile Deviation) :
(1) 25 percent of the observations
(2) 50 percent of the observations
(3) 75 percent of the observations
(4) 100 percent of the observations
31. If a random variable X has mean 3 and standard deviation 5, then the variance of the variable $\mathrm{Y}=2 \mathrm{X}-5$ is :
(1) 45
(2) 100
(3) 15
(4) 40
32. If the coefficient of Kurtosis γ_{2} of a distribution is zero, the frequency curve is :
(1) Leptokurtic
(2) Platykurtic
(3) Mesokurtic
(4) All of these
33. Which of the following distributions has memoryless property?
(1) Binomial
(2) Normal
(3) Gamma
(4) Exponential
34. Regression analysis can be used for :
(1) Reducing the length of confidence interval
(2) Prediction of dependent variable
(3) Knowing the true effect of certain treatments
(4) All of the above
35. The formula for probable error (P.E.) is :
(1) P.E. $=0.6745 \sqrt{\frac{1-r^{2}}{n}}$
(2) \quad P.E. $=0.6745 \sqrt{\frac{1-r^{2}}{n-2}}$
(3) P.E. $=0.6745 \frac{1-r^{2}}{n}$
(4) P.E. $=0.6745 \frac{1-r^{2}}{\sqrt{n}}$
36. The hypothesis $H_{0}: \rho=\rho_{0}$ (a constant) can be tested by making use of the transformation :
(1) $Z_{\rho}=\log _{10}\left(\frac{1+\rho}{1-\rho}\right)$
(2) $Z_{\rho}=\log _{10}\left(\frac{1-\rho}{1+\rho}\right)$
(3) $\mathrm{Z}_{\rho}=\frac{1}{2} \log _{e}\left(\frac{1+\rho}{1-\rho}\right)$
(4) $\mathrm{Z}_{\rho}=\log _{e}\left(\frac{1-\rho}{1+\rho}\right)$
37. If the value of coefficient of determination R^{2} is close to 1 , it leads to the conclusion that:
(1) There is a lack of linear relationship
(2) Linear relation is almost perfect
(3) There is a curvilinear relation
(4) All of the above
38. In a multivariate study, the correlation between any two variables eliminating the effect of all other variables is called :
(1) Simple correlation
(2) Multiple correlation
(3) Partial correlation
(4) Partial regression
39. The probability of Type II error is called :
(1) α
(2) β
(3) $1-\alpha$
(4) $1-\beta$
40. The entire large sample theory is based on the assumption that :
(1) Sampling distribution of a statistic is approximately normal
(2) Sampling distribution of a statistic is far from normal
(3) Sampling distribution of a statistic is approximately Log-normal
(4) None of the above
41. $\mathrm{H}_{0}: \mu_{1}=\mu_{2}$ means:
(1) There is no significant difference between the population medians
(2) There is no significant difference between the population means
(3) There is significant difference between the population means
(4) None of the above
42. t-distribution is given by :
(1) Laplace
(2) Shewart
(3) Hurwitz
(4) W. S. Gosset
43. When a null hypothesis is $\mathrm{H}_{0}: \mu=\mu_{0}$, the alternative hypothesis cannot be :
(1) $\mathrm{H}_{1}: \mu>\mu_{0}$
(2) $\mathrm{H}_{1}: \mu<\mu_{0}$
(3) $\mathrm{H}_{1}: \mu \neq \mu_{0}$
(4) $\mathrm{H}_{1}: \mu=\mu_{0}$
44. Research is :
(1) Art of scientific investigation
(2) An original contribution to existing knowledge
(3) Voyage of discovery
(4) All of the above
45. To pursue research, which of the following is priorly required?
(1) Formulating research hypotheses
(2) Framing research question based on objectives
(3) Searching for data analysis procedure
(4) None of the above
46. Which one is not a type of research?
(1) Quantitative research
(2) Qualitative research
(3) Observational research
(4) Applied research
47. In which type of research, the research is carried on several time periods?
(1) Conceptual research
(2) Qualitative research
(3) Descriptive research
(4) Longitudinal research
48. Review of literature means :
(1) Formation of theoretical framework for the analysis purpose
(2) Testing of hypothesis
(3) Interpretation of data
(4) Overview of the previously published works on specific topic
49. The conclusion of which type of research cannot be generalized?
(1) Experimental research
(2) Historical research
(3) Descriptive research
(4) Analytical research
50. Research related to pure mathematics comes under which type of research?
(1) Applied research
(2) Historical research
(3) Descriptive research
(4) Fundamental resaerch
51. $\mathrm{A}=\{a, b, c\}$ is a sample space where outcome ' a ' is twice as likely as outcome ' b ', and outcome ' b ' is half as likely as outcome ' c '. Then $\mathrm{P}(b)$ will be :
(1) $\frac{1}{5}$
(2) $\frac{2}{5}$
(3) $\frac{3}{5}$
(4) $\frac{4}{5}$
52. If $\mathrm{P}(\mathrm{A})=\frac{1}{2}, \mathrm{P}\left(\mathrm{B}^{c}\right)=\frac{11}{16}$ and $\mathrm{P}(\mathrm{A} \cup \mathrm{B})=\frac{3}{4}$, find $\mathrm{P}(\mathrm{A} \cap \mathrm{B})$:
(1) $\frac{15}{16}$
(2) $\frac{1}{8}$
(3) $\frac{1}{16}$
(4) $\frac{11}{16}$
53. A wooden cube of size $5 \times 5 \times 5$ is painted red and then sliced into 125 cubes of size $1 \times 1 \times 1$. One of these cubes is taken at random. What is the probability that it is not painted?
(1) $\frac{27}{125}$
(2) $\frac{8}{125}$
(3) $\frac{36}{125}$
(4) $\frac{54}{125}$
54. An $m \times n$ rectangle of men is formed with m men per row and n men per column. Find the probability that a man finds himself in the outer perimeter of the rectanlge.
(1) $\frac{4}{m n}$
(2) $\left(\frac{1}{m}+\frac{1}{n}\right)$
(3) $\frac{2(m+n)}{m n}$
(4) $\frac{2 m+2 n-4}{m n}$
55. Pawan hits a target with probability 0.8 and Sohan hits the same target with probability 0.75 . If they aim at the target, what is the probability that neither will hit it?
(1) 0.2
(2) 0.05
(3) 0.15
(4) 0.6
56. Two fair dice, one of which is an ordinary die, and the other has sides with $1,3,5$, $7,9,10$ are rolled at random. Find the probability of rolling a sum of 12.
(1) $\frac{1}{6}$
(2) $\frac{1}{12}$
(3) $\frac{1}{18}$
(4) $\frac{1}{36}$
57. A multiple-choice exam has 20 questions. Each question has 3 choices, of which exactly one is the right answer. A person answers this exam randomly. What is the probability of scoring exactly 12 correct?
(1) $\binom{20}{12}\left(\frac{1}{3}\right)^{12}$
(2) $\binom{20}{12}\left(\frac{1}{3}\right)^{12}\left(\frac{2}{3}\right)^{8}$
(3) $\binom{20}{12}\left(\frac{1}{3}\right)^{12}\binom{20}{8}\left(\frac{2}{3}\right)^{8}$
(4) $\frac{3}{5}$
58. You play a game as follows : you throw a blue and a red die. If the sum of the dots is in $\{2,3,4\}$, you earn $₹ 1$. If it is in $\{5,6,7\}$, you lost $₹ 1$. If it is in $\{8,9,10\}$, you win ₹ 2 . If it is in $\{11,12\}$, you lose ₹ 2 . What is your average gain after each game ?
(1) ₹ 0
(2) ₹ 1.50
(3) ₹ 0.25
(4) ₹ 0.33

Questions 59 and 60 are based on this situation : An unbiased coin with probability of showing heads $3 / 4$ and probability of showing tails $1 / 4$ is flipped three times.
59. What is the probability of obtaining no heads ?
(1) $\frac{1}{64}$
(2) $\frac{27}{64}$
(3) $\frac{37}{64}$
(4) $\frac{63}{64}$
60. What is the probability of obtaining exactly one head?
(1) $\frac{1}{64}$
(2) $\frac{9}{64}$
(3) $\frac{37}{64}$
(4) $\frac{27}{64}$

Questions 61 and 62 are based on this information: An absolutely continuous random variable X has the following probability density function (pdf) :

$$
f(x)=\left\{\begin{array}{cc}
\frac{k}{x^{2}}, & \text { if } 1 \leq x \leq 3 \\
0, & \text { otherwise }
\end{array}\right.
$$

where k is a constant.
61. The value of k for the given pdf is :
(1) $\frac{1}{2}$
(2) 2
(3) $\frac{3}{2}$
(4) $\frac{2}{3}$
62. The value of $P(X \geq 2)$ for the given $p d f$ is :
(1) $\frac{2}{3}$
(2) $\frac{1}{2}$
(3) $\frac{1}{3}$
(4) $\frac{1}{4}$
63. Stochastic processes are :
(1) Random in nature
(2) Function of time
(3) Random in nature and a function of time
(4) None of the above
64. Which one of the following models is non-probabilistic model ?
(1) Deterministic model
(2) Stochastic model
(3) Both (1) and (2)
(4) None of these
65. $\{\mathrm{X}(t), t \in \mathrm{~T}\}$ is a stochastic process. If the joint distribution of $\mathrm{X}_{t_{1}}, \mathrm{X}_{t_{2}}, \ldots, \mathrm{X}_{t_{n}}$ and $\mathrm{X}_{t_{1}+h}, \mathrm{X}_{t_{2}+h}+\ldots+\mathrm{X}_{t_{n}+h}$ is same for all $h>0$; then $\mathrm{X}(t)$ is :
(1) Weak stationary process
(2) Strong stationary process
(3) Process with independent increments
(4) Markov process
66. If $\mathrm{X}(t)$ is the number of telephone calls received at switchboard in $(0, t] t \in(0, \infty)$, then $\mathrm{X}(t)$ is :
(1) Discrete random variable
(2) Discrete stochastic process discrete in time
(3) Discrete stochastic process continuous in time
(4) Continuous stochastic process discrete in time
67. The inequality which is used to obtain minimum variance bound of an estimator is :
(1) Chebychev's inequality
(2) Jenson's inequality
(3) Cramer-Rao inequality
(4) None of these
68. In the Cramer-Rao inequality, the denominator is called :
(1) Lower bound of variance
(2) Upper bound of variance
(3) Fisher's information
(4) All of these
69. The standard deviation of sampling distribution is known as :
(1) Sample error
(2) Sampling error
(3) Standard error
(4) Simple error
70. A 95% confidence interval for population mean is calculated to be 56 to 64 . If the confidence level is increased to 99%, the confidence interval will :
(1) Become narrower
(2) Remain the same
(3) Become wider
(4) Double in size
71. A random sample of size one is drawn from a population with pdf $f(x, \theta)=\theta e^{-\theta x}, x>0$ and is used to test $H_{0}: \theta=1$ versus $H_{1}: \theta=2$. If $x \geq 2$ is critical region, then the value of (α, β) is :
(1) $\left(e^{-2}, e^{-1}\right)$
(2) $\left(e^{-1}, e^{-2}\right)$
(3) $\left(e^{-2}, 1-e^{-4}\right)$
(4) $\left(e^{-2}, e^{-4}\right)$
72. If $\mathrm{X}_{1}, \mathrm{X}_{2}, \ldots, \mathrm{X}_{n}$ is a random sample from an infinite population where $\mathrm{S}^{2}=\frac{1}{n} \sum_{i}\left(\mathrm{X}_{1}-\overline{\mathrm{X}}\right)^{2}$, the unbiased estimator for the population variance σ^{2} is :
(1) $\frac{1}{n-1} \mathrm{~S}^{2}$
(2) $\frac{n-1}{n} \mathrm{~S}^{2}$
(3) $\frac{1}{n} \mathrm{~S}^{2}$
(4) $\frac{n}{n-1} \mathrm{~S}^{2}$
73. Simple consistency of an estimator T_{n} of $\tau(\theta)$ means :
(1) $\lim _{n \rightarrow \infty} \mathrm{P}_{\theta}\left\{\left|\mathrm{T}_{n}-\tau(\theta)\right|<\varepsilon\right\}=1$
(2) $\lim _{n \rightarrow \infty} \mathrm{P}_{\theta}\left\{\left|\mathrm{T}_{n}-\tau(\theta)\right|<\varepsilon\right\}=0$
(3) $\mathrm{P}_{\theta}\left\{\left|\mathrm{T}_{n}-\tau(\theta)\right|>\varepsilon\right\}=1$
(4) All of these
74. A sequence of estimator $\mathrm{T}_{1}, \mathrm{~T}_{2}, \ldots, \mathrm{~T}_{n}$ of $\tau(\theta)$ is known as best asymptotically normal estimator if it satisfies :
(1) $\sqrt{n}\left[\mathrm{~T}_{n}-\tau(\theta)\right] \sim \mathrm{N}\left(0, \sigma^{2}\right)$
(2) T_{n} has minimum variance as compared to the variance of any other estimator T_{n}
(3) T_{n} is consistent
(4) All of the above
75. With the help of Rao-Blackwell theorem, the minimum variance unbiased estimator is obtained through :
(1) Unbiased estimator
(2) Complete statistic
(3) Efficient statistic
(4) Sufficient statistic
76. Lahiri method of sample selection is applicable in :
(1) PPSWOR Scheme
(2) PPSWR Scheme
(3) Midzuno-Sen Scheme
(4) Sampling for proportion and percentage
77. In cluster sampling, generally ' ρ_{w} ' is found to be :
(1) Positive
(2) Negative
(3) $0 \leq \rho_{w} \leq 1$
(4) Both (2) and (3)
78. In large sample with simple random sampling, the ratio estimator has smaller variance than the estimator $\hat{Y}=X \bar{Y}$, if correlation between X and Y is :
(1) $=\frac{1}{2} \frac{\mathrm{CV}(y)}{\mathrm{CV}(x)}$
(2) $=\frac{1}{2} \frac{\mathrm{CV}(x)}{\mathrm{CV}(y)}$
(3) $<\frac{1}{2} \frac{\mathrm{CV}(x)}{\mathrm{CV}(y)}$
(4) $>\frac{1}{2} \frac{\mathrm{CV}(x)}{\mathrm{CV}(y)}$
79. The mean of a systematic sample is more precise than the mean of simple random sample if and only if :
(1) $\mathrm{S}^{2}<\mathrm{S}_{w}^{2}$
(2) $\mathrm{S}^{2}>\mathrm{S}_{w}^{2}$
(3) $\mathrm{NS}^{2}<\mathrm{S}_{w}^{2}$
(4) $\mathrm{NS}^{2}=\mathrm{S}_{w}^{2}$
80. While adopting two-stage sampling scheme, if $n=N$, then two-stage sampling scheme reduces to :
(1) Stratified sampling
(2) Two-stage cluster sampling
(3) Cluster sampling
(4) Systematic sampling
81. A population is divided into two strata such that:
$\mathrm{N}_{1}=300, \mathrm{~N}_{2}=200, \mathrm{~S}_{1}=2, \mathrm{~S}_{2}=3$
If a sample of size 24 is to be allocated by Neyman allocation then the sample strata sizes from each stratum are :
(1) $(10,14)$
(2) $(14,10)$
(3) $(13,11)$
(4) $(12,12)$
82. In a 2^{3}-factorial experiment, the treatment effect

$$
\frac{1}{4}[(a b c)-(b c)+(a b)-(b)-(a c)+(c)-(a)+(1)]
$$

is due to the treatment :
(1) A
(2) B
(3) C
(4) AB
83. In a RBD with 4 blocks and 4 treatments having one missing value, the error degree of freedom is :
(1) 8
(2) 10
(3) 11
(4) 12
84. In a 2^{3} confounding factorial experiment a replicate with two blocks is given as follows :

Block I	Block II
$a b c$	$a c$
$b c$	$a b$
a	b
(1)	c

The confounded interaction in it, is :
(1) ABC
(2) AB
(3) BC
(4) AC
85. For a balanced incomplete block design (BIBD) which of the following is true ?
(1) $v r=b k$
(2) $\lambda(v-1)=r(k-t)$
(3) $b<v$
(4) $b=k-t$
86. In a 2^{3} factorial experiment with r blocks, the degrees of freedom for error is :
(1) $r-1$
(2) $7 r+1$
(3) $7 r-1$
(4) $7(r-1)$
87. The degrees of freedom for F-ratio in a 7×7 Latin square design is :
(1) $(7,42)$
(2) $(7,30)$
(3) $(6,30)$
(4) $(6,42)$
88. If $\underset{\sim}{X} p \times 1 \sim \mathrm{~N}_{p} \underset{\sim}{(\mu, \Sigma)}$, , then consider the following :
(i) $\quad{\underset{\sim}{Z}}_{p \times 1}=\mathrm{D} \underset{\sim}{\mathrm{X}}{ }_{p \times 1} \sim \mathrm{~N}_{p}\left(\mathrm{D} \underset{\sim}{\mu}, \mathrm{D} \Sigma \mathrm{D}^{\mathrm{T}}\right)$, where $\operatorname{rank}\left(\mathrm{D}_{p \times p}\right)=p$
(ii) $\quad \underset{\sim}{\mathrm{Z}}{ }_{p \times 1}=\mathrm{D} \underset{\sim}{\mathrm{X}}{ }_{p \times 1} \sim \mathrm{~N}_{p}\left(\mathrm{D} \underset{\sim}{\mu}, \mathrm{D}^{\mathrm{T}} \Sigma \mathrm{D}\right)$, where rank $\left(\mathrm{D}_{p \times p}\right)=p$
(iii) ${\underset{\sim}{Z}}_{q \times 1}=\mathrm{D} \underset{\sim}{\mathrm{X}}{ }_{p \times 1} \sim \mathrm{~N}_{q}\left(\mathrm{D} \underset{\sim}{\mu}, \mathrm{D} \Sigma \mathrm{D}^{\mathrm{T}}\right)$, where $\operatorname{rank}\left(\mathrm{D}_{q \times p}\right)=q \leq p$
(iv) ${\underset{\sim}{Z}}_{q \times 1}=\mathrm{D}_{\sim}^{\mathrm{X}} \underset{p \times 1}{ } \sim \mathrm{~N}_{q}\left(\mathrm{D} \underset{\sim}{\mu}, \mathrm{D}^{\mathrm{T}} \Sigma \mathrm{D}\right)$, where $\operatorname{rank}\left(\mathrm{D}_{q \times p}\right)=q \leq p$

If D is any matrix of constant elements, then which of the above is/are correct?
(1) Only (ii)
(2) Both (ii) and (iii)
(3) Both (i) and (iii)
(4) Both (ii) and (iv)
89. If $\underset{\sim}{X} \sim N_{p}(\underset{\sim}{\mu}, \Sigma)$, then $(\underset{\sim}{X}-\mu)^{T} \Sigma^{-1}(\underset{\sim}{X}-\underset{\sim}{\mu})$ follows :
(1) Wishart distribution
(2) χ^{2} distribution
(3) Hotelling's T^{2} distribution
(4) None of these
90. If Σ_{1} and Σ_{2} are the two covariance matrices given by :
$\Sigma_{1}=\left(\begin{array}{ccc}14 & 8 & 3 \\ 8 & 5 & 2 \\ 3 & 2 & 1\end{array}\right)$ and $\Sigma_{2}=\left(\begin{array}{ccc}6 & 6 & 1 \\ 6 & 8 & 2 \\ 1 & 2 & 1\end{array}\right)$
Which of the below is correct?
(1) $\left|\Sigma_{1}\right|>\left|\Sigma_{2}\right|$ and trace $\left(\Sigma_{2}\right)<\operatorname{trace}\left(\Sigma_{1}\right)$
(2) $\left|\Sigma_{1}\right|>\left|\Sigma_{2}\right|$ and trace $\left(\Sigma_{1}\right)<\operatorname{trace}\left(\Sigma_{2}\right)$
(3) $\left|\Sigma_{2}\right|>\left|\Sigma_{1}\right|$ and trace $\left(\Sigma_{1}\right)<\operatorname{trace}\left(\Sigma_{2}\right)$
(4) $\left|\Sigma_{2}\right|>\left|\Sigma_{1}\right|$ and trace $\left(\Sigma_{2}\right)<\operatorname{trace}\left(\Sigma_{1}\right)$
91. Which distribution is a multivariate analogue of Chi-Square distribution?
(1) Exponential distribution
(2) Wishart distribution
(3) t-distribution
(4) None of these
92. If $\underset{\sim}{X}$ is a 3-dimensional random vector with dispersion matrix

$$
\Sigma=\left(\begin{array}{ccc}
6 & -3 & 0 \\
-3 & 6 & 0 \\
0 & 0 & 3
\end{array}\right)
$$

then the proportion of variability explained by the first principal component is given by :
(1) 65%
(2) 60%
(3) 80%
(4) 62%
93. Linear programming is a :
(1) Constrained optimization technique
(2) Technique for economic allocation of limited resources
(3) Mathematical technique
(4) All of the above
94. For maximisation linear programming model, the simplex method is terminated when all values :
(1) $z_{j}-c_{j} \geq 0$
(2) $z_{j}-c_{j} \leq 0$
(3) $z_{j}-c_{j}=0$
(4) $z_{j} \leq 0$
95. If there were n workers and n jobs, there would be :
(1) n ! solutions
(2) $(n-1)$! solutions
(3) $(n!)^{n}$ solutions
(4) n solutions
96. Which of the following characteristics apply to queueing system ?
(1) Customer population
(2) Arrival process
(3) Both (1) and (2)
(4) Neither (1) nor (2)
97. The calling population is assumed to be infinite when :
(1) Arrivals are independent of each other
(2) Capacity of the system is infinite
(3) Service rate is faster than the arrival rate
(4) All of the above
98. Which of the following is not a key operating characteristic for a queuing system ?
(1) Utilisation factor
(2) Percent idle time
(3) Average time spent for waiting in system and queue
(4) None of the above
99. Which of the cost estimates and performance measures are not used for economic analysis of a queuing system?
(1) Cost per server per unit of time
(2) Cost per unit of time for a customer waiting in the system
(3) Average number of customers in the system
(4) Average waiting time of customers in the system
100. An assignment problem is considered as a particular case of a transportation problem, because :
(1) The number of rows equals the number of columns
(2) All $\mathrm{X}_{i j}=0$ or 1
(3) All rim conditions are 1
(4) All of the above

PHDSTAT

पी-एच. डी. (सांख्यिकी)
 प्रवेश परीक्षा, जुलाई, 2023

समय: 3 घण्टे
अधिकतम अंक: 100

सामान्य निर्देश

1. सभी प्रश्न अनिवार्य हैं। प्रत्येक प्रश्न 1 अंक का है।
2. परीक्षा कक्ष के अंदर सेलफोन, कैलकुलेटर्स, पुस्तकें, स्लाइड-रूल्स, नोटबुक्स या लिखित नोट्स, इत्यादि ले जाने की अनुमति नहीं है।
3. आपको परीक्षा स्थल पर केंद्र व्यवस्थापक व निरीक्षक के द्वारा दिए गये निर्देशों का अनुपालन करना होगा। ऐसा न करने पर आपको अयोग्य घोषित किया जाएगा।
4. कोई परीक्षार्थी नकल करते या कराते हुए पकड़ा जाता है तो उसे अयोग्य घोषित कर दिया जाएगा।
5. आपको निरीक्षक द्वारा प्रश्न-पुस्तिका तथा ओ. एम. आर. उत्तर पत्रक प्रदान किया जाएगा। परीक्षा समाप्त हो जाने के पश्चात्, परीक्षा कक्ष छोड़ने से पहले ओ. एम. आर. उत्तर पत्रक तथा प्रश्न-पुस्तिका को निरीक्षक को सौंप दें। किसी परीक्षार्थी द्वारा ऐसा न करने पर उसे अयोग्य घोषित कर दिया जाएगा तथा विश्वविद्यालय उसके खिलाफ आगे कार्यवाही कर सकता है।
6. सभी रफ कार्य प्रश्नपत्र पर ही करना है, किसी अन्य कागज पर नहीं। स्क्रैप पेपर की अनुमति नहीं है। उत्तर देते समय आप उत्तर-पुस्तिका में ही हाशिये का प्रयोग कर सकते हैं, कुछ निशान लगा सकते हैं या रेखांकित कर सकते हैं।
7. विश्वविद्यालय को यह अधिकार है कि किसी परीक्षार्थी द्वारा अनुचित व्यवहार या अनुचित साधनों का प्रयोग करने पर उसके परिणाम को रद्द कर दे। विश्वविद्यालय को भी चाहिए कि वह सभी परीक्षार्थियों के अंकों की जाँच एकसमान रूप से करे। यदि कहीं से ऐसा दिखाई देता है कि आपका निष्पादन उचित नहीं है, तो विश्वविद्यालय आपके परिणाम रद्द कर सकता है।

ओ. एम. आर. उत्तर-पत्रक एवं परीक्षा उत्तर-पत्रक पर सूचना कैसे भरें ?

1. 10 अंकों में अपना पूर्ण अनुक्रमांक लिखें। यह अनुक्रमांक ओ. एम. आर. उत्तर पत्रक पर आपके द्वारा डाले गए अनुक्रमांक से मिलना चाहिए। दिए गए स्थान में अपना सही नाम, पता भी पिन कोड सहित लिखें। ओ. एम. आर. उत्तर पत्रक पर तिथि सहित अपने हस्ताक्षर करें। यह सुनिश्चित कर लें कि आपके परीक्षा कक्ष में निरीक्षक ने भी दी गई जगह पर तिथि सहित ओ. एम. आर. उत्तर पत्रक पर हस्ताक्षर कर दिए हैं।
2. ओ. एम. आर. उत्तर पत्रक पर परीक्षार्थी का विवरण नीले/काले बाल पेन द्वारा भरा जाना चाहिए। अनुक्रमांक व परीक्षा केंद्र कूट लिखने व साथ ही प्रश्न के क्रमांक के सामने सही उत्तर-संख्या वाले गोले को काला करने के लिए भी नीले/काले बाल पेन का प्रयोग करें।
3. इस पत्रक पर कोई अवांछित निशान न लगायें।
4. अनुक्रमांक तथा परीक्षा केंद्र कूट स्तंभ में सही सूचना अंकों में लिखें। संगत गोले को पूर्णतः गहरा करें तथा पूर्ण रूप से भरें।
5. प्रत्येक प्रश्न के चार संभावित उत्तर हैं जिन्हें (1), (2), (3) व (4) द्वारा दर्शाया गया है। आपको इनमें से सर्वाधिक उचित उत्तर को चुनकर दर्शाना है। सर्वाधिक उचित उत्तर को चुनकर नीले / काले बाल पेन से प्रश्न के क्रमांक के सामने सही उत्तर वाले गोले को काला करें।
6. एक से अधिक उत्तर होने पर कोई अंक नहीं मिलेगा। इसलिए सर्वाधिक उचित उत्तर को ही चुनें।
7. एक प्रश्न पर अधिक समय मत खर्च कीजिए। यदि आपको कोई प्रश्न कठिन लग रहा हो, तो उसे छोड़कर अगले प्रश्न को हल करने का प्रयास कीजिए। बाद में समय बचने पर उस छोड़े हुए प्रश्न का उत्तर दे सकते हैं।
8. गलत उत्तरों हेतु कोई ऋणात्मक अंकन नहीं होगा।
9. किसी देश की 5 वर्षों की औसत वार्षिक वर्षा (mm में) नीचे दी गई है :

वर्ष	औसत वर्षा
2018	128
2019	130
2020	122
2021	124
2022	120

दी हुई आँकड़ों की इस श्रेणी को निम्न रूप में वर्गीकृत किया जाता है :
(1) वैयक्तिक श्रेणी
(2) संतत श्रेणी
(3) विविक्त श्रेणी
(4) काल श्रेणी
2. निम्नलिखित में से किसके एक संतत मात्रात्मक चर होने की अधिकतम संभावना है ?
(1) क्रिकेट विश्व कप में एक बल्लेबाज द्वारा बनाए गए कुल रन
(2) भारत की जनसंख्या
(3) इलेक्ट्रोनिक्स स्टोर द्वारा बेचे गए टेलीविजनों की संख्या
(4) प्रवेश परीक्षा समाप्त करने में लिया गया समय
3. SRSWOR का उपयोग करते हुए, 100 इकाइयों में से 10 इकाइयाँ निकालने की प्रायिकता है :
(1) $\frac{1}{10!}$
(2) $\frac{1}{100}$
(3) $\frac{1}{{ }^{100} \mathrm{C}_{10}}$
(4) $\frac{10}{100}$
4. किसी प्रतिदर्शज के प्रतिचयन बंटन का माध्य कहलाता है :
(1) प्रतिचयन त्रुटि
(2) प्रकार-I त्रुटि
(3) अप्रतिचयन त्रुटि
(4) इनमें से कोई नहीं
5. विश्व कप के लिए, क्रिकेट टीम चुनने के लिए उपयोग की गई विधि है :
(1) यादृच्छिक प्रतिचयन
(2) क्रमबद्ध प्रतिचयन
(3) उद्देश्यीय प्रतिचयन
(4) गुच्छ प्रतिचयन
6. यदि कोई प्रतिदर्श भूल और प्रयास विधि से (लापरवाही से) चुना जाता है, तो यह प्रतिचयन विधि कहलाती है :
(1) सुविधा या आकस्मिक प्रतिचयन
(2) उद्देश्यीय प्रतिचयन
(3) स्तरीकृत प्रतिचयन
(4) क्रमबद्ध प्रतिचयन
7. निम्नलिखित में से कौन प्रतिचयन त्रुटि के लिए सत्य है ?
(1) प्रतिचयन त्रुटि समष्टि माध्य के बराबर होती है।
(2) यह प्रतिदर्श आँकड़ों तथा समष्टि प्राचल के बीच का अंतर है।
(3) यह सदैव धनात्मक होता है।
(4) यह सदैव ॠणात्मक होता है।
8. निम्नलिखित में से कौन अप्रतिचयन त्रुटियों का एक प्रकार नहीं है ?
(1) मापन त्रुटि
(2) अप्रतिक्रिया त्रुटि
(3) प्रसंस्करण त्रुटि
(4) माध्य वर्ग त्रुटि
9. निम्नलिखित में से कौन अप्रायिकता प्रतिचयन तकनोकों की एक समस्या है ?
(1) विधियों में व्यय अधिक होता है।
(2) परिणाम कभी प्रतिनिधिक नहीं होते।
(3) मानव अभिनति
(4) प्रतिक्रिया देने वाले भाग लेने से मना कर सकते हैं।
10. मान लीजिए कि समष्टि माध्य $\overline{\mathrm{Y}}$ का आकलन करने के लिए, SRSWOR के अन्तर्गत प्रतिदर्श माध्य \bar{y}_{1} है तथा SRSWR के अन्तर्गत यह \bar{y}_{2} है। तब :
(1) $\operatorname{Var}\left(\bar{y}_{1}\right)=\operatorname{Var}\left(\bar{y}_{2}\right)$
(2) $\operatorname{Var}\left(\bar{y}_{1}\right)=1 / \operatorname{Var}\left(\bar{y}_{2}\right)$
(3) $\operatorname{Var}\left(\bar{y}_{1}\right) \leq \operatorname{Var}\left(\bar{y}_{2}\right)$
(4) $\operatorname{Var}\left(\bar{y}_{1}\right) \geq \operatorname{Var}\left(\bar{y}_{2}\right)$
11. n इकाइयों वाला एक ऐसा प्रतिदर्श चुनने के लिए, जिसमें एक दुर्लभ गुण हो, एक उचित प्रतिचयन प्रविधि है :
(1) SRSWOR
(2) स्तरीकृत प्रतिचयन
(3) प्रतिलोम प्रतिचयन
(4) ये सभी
12. निम्नलिखित में से कौन लैटिन वर्ग डिजाइन का न्यूनतम संभव रूप है ?
(1) (1×1)
(2) (2×2)
(3) (3×3)
(4) (4×4)
13. अनुक्रमीय रूप से अंकित दिल्ली मेट्रो के स्तंभों में से, यादृच्छिक रूप से किसी स्थान (बिन्दु) से प्रारंभ करते हुए तथा फिर प्रत्येक 10 वाँ स्तंभ लेते हुए, कोई व्यक्ति एक प्रतिदर्श चुनता है। उस व्यक्ति ने एक प्रतिदर्श चुना है।
(1) सरल यादृच्छिक
(2) अनुक्रमीय
(3) स्तरीकृत
(4) क्रमबद्ध
14. 'भारत सरकार के मौसम विज्ञान विभाग' के पोर्टल से लिए गए आँकड़े कहे जाएँगे :
(1) प्राथमिक आँकड़े
(2) गौण आँकड़े
(3) उपर्युक्त (1) और (2) दोनों
(4) न तो प्राथमिक और न ही गौण आँकड़े
15. वह प्रतिचयन प्रक्रिया, जिसमें सर्वप्रथम किसी स्थान की समष्टि को सजातीय समूहों में विभाजित किया जाता है तथा फिर प्रत्येक समूह से एक यादृच्छिक प्रतिदर्श निकाला जाता है, कहलाती है :
(1) प्रायिकता प्रतिचयन
(2) सरल यादृच्छिक प्रतिचयन
(3) स्तरीकृत प्रतिचयन
(4) गुच्छ प्रतिचयन
16. मान लीजिए कि 10 उत्पादों में से 2 उत्पाद, बिना प्रतिस्थापित किए हुए, चुने जाते हैं। तब, सभी संभव यादृच्छिक प्रतिदर्शों की संख्या होगी :
(1) 45
(2) 40
(3) 201
(4) 5
17. निम्नलिखित में से कौन-सा चर एक विशेष परिसर के अन्दर सभी संभव मान ग्रहण नहीं कर सकता है ?
(1) विविक्त चर
(2) संतत चर
(3) बीच में आने वाला चर
(4) अतिरिक्त चर
18. निम्नलिखित में से कौन-से आलेखीय निरूपण में, संचयी बारंबारताओं का आलेखन सम्बद्ध होता है, जो नीचे की ओर या ऊपर की ओर संचयी हो सकती है ?
(1) बारंबारता बहुभुज
(2) रेखा आलेख
(3) आयतचित्र
(4) तोरण
19. सांख्यिकी में पीएच.डी (Ph.D.) की प्रवेश परीक्षा को पूरा करने में लिए गए समय का वर्णन करने में, निम्न में से कौन-सा मापन स्केल सबसे अधिक उपयुक्त है ?
(1) नामित (अंकित)
(2) क्रमसूचक
(3) अंतराल
(4) अनुपात
20. यदि कोई यादृच्छिक चर $\mathrm{X} \sim \operatorname{Bin}(48,3 / 4)$ है, तो इस यादृच्छिक चर X का मानक विचलन है :
(1) $\sqrt{3}$
(2) $\frac{3}{4} \log 48$
(3) 3
(4) $48 \log \frac{3}{4}$
21. यदि कोई यादृच्छिक चर $\mathrm{X} \sim \mathrm{N}(40,4)$ है तथा X का प्रत्याशित मान 40 है, तो X का माध्यक है :
(1) 36
(2) 44
(3) 38
(4) 40
22. यदि कोई यादृच्छिक चर $\mathrm{X} \sim \operatorname{Pois}(3)$ है, तो $\mathrm{P}(\mathrm{X}=2)$ बराबर होगा :
(1) $\frac{9}{2} e^{-2}$
(2) $\frac{9}{2} e^{-3}$
(3) $\frac{2}{9} e^{-2}$
(4) $\frac{2}{9} e^{-3}$
23. यदि कोई यादृच्छिक चर $\mathrm{X} \sim \mathrm{N}(40,9)$ है, तो $\mathrm{P}(\mathrm{X}=2)$ बराबर होगा :
(1) $\frac{9}{40}$
(2) 0
(3) $\frac{40}{81}$
(4) $\frac{81}{1600}$
24. यदि किसी समुच्चय के प्रत्येक प्रेक्षण को 2 से भाग दिया जाए, तो नए मानों का माध्य :
(1) प्रारंभिक माध्य का दुगुना है।
(2) 2 कम हो जाएगा
(3) प्रारंभिक माध्य का आधा है।
(4) वही रहता है।
25. गुणोत्तर माध्य अन्य माध्यों से बेहतर होता है, जब आँकड़े होते हैं :
(1) धनात्मक भी और ॠणात्मक भी
(2) अनपपातों या प्रतिशतों में
(3) द्विआधारी
(4) अन्तराल स्केल पर
26. A.M., G.M. और H.M. में सही सम्बन्ध है :
(1) A.M. $=$ G.M. $=$ H.M.
(2) G.M. \geq A.M. \geq H.M.
(3) H.M. \geq G.M. \geq A.M.
(4) A.M. \geq G.M. \geq H.M.
27. समान माध्य, माध्यक और बहुलक वाली दो श्रेणियों में हो सकते हैं :
(1) समान मान
(2) समान मान नहीं
(3) (1) और (2) दोनों
(4) न तो (1) और न ही (2)
28. भारित माध्य की स्थिति में, माध्य की परिशुद्धता या उपयोगिता :
(1) में कमी आ जाती है।
(2) में वृद्धि हो जाती है।
(3) अप्रभावित रहती है।
(4) इनमें से कोई नहीं
29. निम्नलिखित में से परिक्षेपण का कौन-सा मापक श्रेष्ठतम माना जाता है ?
(1) मानक विचलन
(2) परिसर
(3) प्रसरण
(4) प्रसरण का गुणांक
30. एक सममित बंटन के लिए, $\mathrm{Md}+$ Q.D. (जब $\mathrm{Md}=$ माध्यक, Q.D. = चतुर्थक विचलन) सम्मिलित करता है :
(1) प्रेक्षणों का 25 प्रतिशत
(2) प्रेक्षणों का 50 प्रतिशत
(3) प्रेक्षणों का 75 प्रतिशत
(4) प्रेक्षणों का 100 प्रतिशत
31. यदि एक यादृच्छिक चर X का माध्य 3 और मानक विचलन 5 है, तो चर $\mathrm{Y}=2 \mathrm{X}-5$ का प्रसरण है :
(1) 45
(2) 100
(3) 15
(4) 40
32. यदि किसी बंटन की ककुदता का गुणांक γ_{2} शून्य है, तो बारंबारता वक्र है :
(1) तंगककुदी
(2) सपाटककुदी
(3) मध्यककुदी
(4) ये सभी
33. निम्नलिखित में से किस बंटन में स्मृतिहीन गुण होता है ?
(1) द्विपद
(2) प्रसामान्य
(3) गामा
(4) चरघातांकीय
34. समाश्रयण विश्लेषण का उपयोग निम्न के लिए किया जा सकता है :
(1) विश्वास्यता अंतराल की लंबाई कम करने में
(2) आश्रित चर की प्रागक्ति में
(3) कुछ उपचारों के वास्तविक प्रभाव को जानने में
(4) ये सभी
35. संभावित त्रुटि (P.E.) के लिए सूत्र है :
(1) P.E. $=0.6745 \sqrt{\frac{1-r^{2}}{n}}$
(2) P.E. $=0.6745 \sqrt{\frac{1-r^{2}}{n-2}}$
(3) P.E. $=0.6745 \frac{1-r^{2}}{n}$
(4) P.E. $=0.6745 \frac{1-r^{2}}{\sqrt{n}}$
36. परिकल्पना $H_{0}: \rho=\rho_{0}$ (एक अचर) की जाँच निम्न रूपांतरण के उपयोग द्वारा की जा सकती है :
(1) $Z_{\rho}=\log _{10}\left(\frac{1+\rho}{1-\rho}\right)$
(2) $Z_{\rho}=\log _{10}\left(\frac{1-\rho}{1+\rho}\right)$
(3) $\mathrm{Z}_{\rho}=\frac{1}{2} \log _{e}\left(\frac{1+\rho}{1-\rho}\right)$
(4) $Z_{\rho}=\log _{e}\left(\frac{1-\rho}{1+\rho}\right)$
37. यदि निर्धारण के गुणांक $\left(\mathrm{R}^{2}\right)$ का मान 1 के निकटतम है, तो इससे निष्कर्ष निकलता है कि :
(1) वहाँ रैखिक सम्बन्ध की कमी है।
(2) रैखिक सम्बन्ध लगभग पूर्ण है।
(3) वहाँ एक वक्रीय सम्बन्ध है।
(4) ये सभी
38. किसी बहुचरीय अध्ययन में, दो चरों के बीच का सहसम्बन्ध, जो अन्य सभी चरों के प्रभाव को विलोपित करता है, कहलाता है :
(1) सरल सहसम्बन्ध
(2) बहुल सहसम्बन्ध
(3) आंशिक सहसम्बन्ध
(4) आंशिक समाश्रयण
39. प्रकार II त्रुटि की प्रायिकता कहलाती है :
(1) α
(2) β
(3) $1-\alpha$
(4) $1-\beta$
40. सम्पूर्ण बड़ा (विस्तृत) प्रतिदर्श सिद्धान्त निम्न परिकल्पना पर आधारित है :
(1) आँकड़ों का प्रतिचयन बंटन लगभग प्रसामान्य होता है।
(2) आँकड़ों का प्रतिचयन बंटन प्रसामान्य से बहुत भिन्न होता है।
(3) आँकड़ों का प्रतिचयन बंटन लगभग लघु-प्रसामान्य होता है।
(4) उपर्युक्त में से कोई नहीं
41. $\mathrm{H}_{0}=\mu_{1}=\mu_{2}$ का तात्पर्य है :
(1) समष्टि माध्यकों के बीच कोई सार्थक अंतर नहीं है।
(2) समष्टि माध्यों के बीच कोई सार्थक अंतर नहीं है।
(3) समष्टि माध्यों के बीच सार्थक अंतर है।
(4) उपर्युक्त में से कोई नहीं
42. t-बंटन निम्न द्वारा दिया गया है :
(1) लाप्लेस
(2) शेवार्ट
(3) हरविज
(4) डब्ल्यू. एस. गोस्सेट
43. जब शून्य परिकल्पना $\mathrm{H}_{0}: \mu=\mu_{0}$ है, तब वैकल्पिक परिकल्पना नहीं हो सकती है :
(1) $\mathrm{H}_{1}: \mu>\mu_{0}$
(2) $\mathrm{H}_{1}: \mu<\mu_{0}$
(3) $\mathrm{H}_{1}: \mu \neq \mu_{0}$
(4) $\mathrm{H}_{1}: \mu=\mu_{0}$
44. अनुसंधान है :
(1) वैज्ञानिक खोज की कला
(2) विद्यालय ज्ञान में एक प्रारंभिक योगदान
(3) खोज की यात्रा
(4) ये सभी
45. अनुसंधान करने के लिए, निम्नलिखित में से किसकी प्रथम आवश्यकता है ?
(1) अनुसंधान परिकल्पनाएँ सूत्रित करना
(2) उद्देश्य सहित अनुसंधान प्रश्न बनाना
(3) आँकड़ों को विश्लेषण करने की विधि की खोज करना
(4) उपर्युक्त में से कोई नहीं
46. निम्नलिखित में से कौन एक अनुसंधान का प्रकार नहीं है ?
(1) मात्रात्मक अनुसंधान
(2) मौलिक अनुसंधान
(3) प्रेक्षणात्मक अनुसंधान
(4) अनुप्रयुक्त अनुसंधान
47. किस प्रकार के अनुसंधान में, अनुसंधान अनेक समय अवधियों पर किया जाता है ?
(1) संकल्पनात्मक अनुसंधान
(2) गुणात्मक अनुसंधान
(3) वर्णनात्मक अनुसंधान
(4) अनुदैर्ध्य देशांतरीय अनुसंधान
48. साहित्य की समीक्षा का तात्पर्य है :
(1) विश्लेषण के उद्देश्य के लिए सैद्धांतिक फ्रेमवर्क का सूत्रण
(2) परिकल्पना की जाँच
(3) आँकड़ों का निर्वचन
(4) विशिष्ट विषय पर पिछले प्रकाशित कार्यों का सिंहावलोकन
49. किस प्रकार के अनुसंधान का व्यापकीकरण नहीं किया जा सकता है ?
(1) प्रायोगिक अनुसंधान
(2) ऐतिहासिक अनुसंधान
(3) वर्णनात्मक अनुसंधान
(4) वैश्लेषिक अनुसंधान
50. शुद्ध गणित से सम्बन्धित अनुसंधान किस प्रकार के अनुसंधान के अन्तर्गत आता है ?
(1) अनुप्रयुक्त अनुसंधान
(2) ऐतिहासिक अनुसंधान
(3) वर्णनात्मक अनुसंधान
(4) मौलिक अनुसंधान
51. $\mathrm{A}=\{a, b, c\}$ एक प्रतिदर्श समष्टि है, जहाँ परिणाम ' a ' के प्राप्त होने की संभावना परिणाम ' b ' के प्राप्त होने की संभावना से दुगुनी है तथा परिणाम ' b ' के प्राप्त होने की संभावना परिणाम ' c ' की संभावना की आधी है। तब, $\mathrm{P}(b)$ होगी :
(1) $\frac{1}{5}$
(2) $\frac{2}{5}$
(3) $\frac{3}{5}$
(4) $\frac{4}{5}$
52. यदि $\mathrm{P}(\mathrm{A})=\frac{1}{2}, \mathrm{P}\left(\mathrm{B}^{c}\right)=\frac{11}{16}$ और $\mathrm{P}(\mathrm{A} \cup \mathrm{B})=\frac{3}{4}$ है, तो $\mathrm{P}(\mathrm{A} \cap \mathrm{B})$ है :
(1) $\frac{15}{16}$
(2) $\frac{1}{8}$
(3) $\frac{1}{16}$
(4) $\frac{11}{16}$
53. मापन $5 \times 5 \times 5$ के एक लकड़ी के घन को लाल रंग से पेंट किया जाता है तथा फिर उसे $1 \times 1 \times 1$ मापन के 125 घनों में काट दिया जाता है। इनमें से एक घन को यादृच्छिक रूप से लिया जाता है। इसकी क्या प्रायिकता है कि इस घन पर पेंट नहीं हुआ है ?
(1) $\frac{27}{125}$
(2) $\frac{8}{125}$
(3) $\frac{36}{125}$
(4) $\frac{54}{125}$
54. व्यक्तियों का एक $m \times n$ आयत बनाया जाता है, जिसमें प्रति पंक्ति m व्यक्ति हैं और प्रति स्तंभ n व्यक्ति हैं। इसकी प्रायिकता ज्ञात कीजिए कि एक व्यक्ति स्वयं को इस आयत के बाहरी परिमाप पर पाता है।
(1) $\frac{4}{m n}$
(2) $\left(\frac{1}{m}+\frac{1}{n}\right)$
(3) $\frac{2(m+n)}{m n}$
(4) $\frac{2 m+2 n-4}{m n}$
55. किसी लक्ष्य पर पवन 0.8 प्रायिकता के साथ निशाना लगाता है तथा उसी लक्ष्य पर सोहन 0.75 प्रायिकता के साथ निशाना लगाता है। इसकी क्या प्रायिकता है कि उस पर दोनों का निशाना नहीं लगेगा ?
(1) 0.2
(2) 0.05
(3) 0.15
(4) 0.6
56. दो न्यायसंगत पासों को, जिनमें से एक साधारण पासा है तथा अन्य के फलकों पर $1,3,5,7$, 9,10 अंकित है, यादृच्छिक रूप से फेंका जाता है। योग 12 प्राप्त होने की प्रायिकता है :
(1) $\frac{1}{6}$
(2) $\frac{1}{12}$
(3) $\frac{1}{18}$
(4) $\frac{1}{36}$
57. एक बहु-विकल्पीय परीक्षा में 20 प्रश्न है। प्रत्येक प्रश्न में 3 विकल्प हैं, जिनमें से एक ही सही उत्तर है। एक व्यक्ति इस परीक्षा में यादृच्छिक रूप से उत्तर देता है। ठीक 12 प्रश्न सही हल करने की प्रायिकता क्या है ?
(1) $\binom{20}{12}\left(\frac{1}{3}\right)^{12}$
(2) $\binom{20}{12}\left(\frac{1}{3}\right)^{12}\left(\frac{2}{3}\right)^{8}$
(3) $\binom{20}{12}\left(\frac{1}{3}\right)^{12}\binom{20}{8}\left(\frac{2}{3}\right)^{8}$
(4) $\frac{3}{5}$
58. आप एक खेल इस प्रकार खेलते हैं : आप एक नीले और एक लाल पासे को फेंकते हैं। यदि बिन्दुओं का योग $\{2,3,4\}$ में है, तो आप ₹ 1 प्राप्त करते हैं। यदि यह $\{5,6,7\}$ में है, तो आप ₹ 1 हार जाते हैं। यदि यह $\{8,9,10\}$ में है, तो आप ₹ 2 जीत जाते हैं। यदि यह $\{11,12\}$ में है, तो आप ₹ 2 हार जाते हैं। प्रत्येक खेल के बाद, आपका औसत लाभ क्या है ?
(1) ₹ 0
(2) ₹ 1.50
(3) ₹ 0.25
(4) ₹ 0.33

प्रश्न 59 और 60 इस स्थिति पर आधारित है : एक अनभिनत (निष्पक्ष) सिक्के को, जिसमें चित की प्रायिकता $3 / 4$ है और पट की प्रायिकता $1 / 4$ है, तीन बार उछाला जाता है।
59. कोई भी चित प्राप्त नहीं होने की प्रायिकता क्या है ?
(1) $\frac{1}{64}$
(2) $\frac{27}{64}$
(3) $\frac{37}{64}$
(4) $\frac{63}{64}$
60. ठीक एक चित प्राप्त होने की प्रायिकता क्या है ?
(1) $\frac{1}{64}$
(2) $\frac{9}{64}$
(3) $\frac{37}{64}$
(4) $\frac{27}{64}$

प्रश्न 61 और 62 इस सूचना पर आधारित है : एक निरपेक्षतः संतत यादृच्छिक चर X का निम्न प्रायिकता घनत्व फलन (pdf) है :

$$
f(x)=\left\{\begin{array}{cc}
\frac{k}{x^{2}}, & \text { यदि } 1 \leq x \leq 3 \\
0, & \text { अन्यथा }
\end{array}\right.
$$

जहाँ k एक अचर है।
61. दिए हुए pdf के लिए, k का मान है :
(1) $\frac{1}{2}$
(2) 2
(3) $\frac{3}{2}$
(4) $\frac{2}{3}$
62. दिए हुए pdf के लिए, $\mathrm{P}(\mathrm{X} \geq 2)$ का मान है :
(1) $\frac{2}{3}$
(2) $\frac{1}{2}$
(3) $\frac{1}{3}$
(4) $\frac{1}{4}$
63. स्टोकेस्टिक प्रक्रियाएँ होती हं :
(1) प्रकृति में यादृच्छिक
(2) समय का फलन
(3) प्रकृति में यादृच्छिक और समय का फलन
(4) उपर्युक्त में से कोई नहीं
64. निम्नलिखित में से कौन-सा मॉडल असंभाव्य मॉडल है ?
(1) निश्चयात्मक मॉडल
(2) स्टोकेस्टिक मॉडल
(3) (1) और (2) दोनों
(4) इनमें से कोई नहीं
65. $\{\mathrm{X}(t), t \in \mathrm{~T}\}$ एक स्टोकेस्टिक प्रक्रिया है। यदि $\mathrm{X}_{t_{1}}, \mathrm{X}_{t_{2}}, \ldots, \mathrm{X}_{t_{n}}$ और $\mathrm{X}_{t_{1}+h}, \mathrm{X}_{t_{2}+h}+\ldots+\mathrm{X}_{t_{n}+h}$ का सभी $h>0$ के लिए, संयुक्त बंटन समान है, तो $\mathrm{X}(t)$ है :
(1) कमजोर स्थिर प्रक्रिया
(2) मजबूत स्थिर प्रक्रिया
(3) स्वतंत्र वृद्धियों के साथ प्रक्रिया
(4) मार्कोव प्रक्रिया
66. यदि $(0, t] t \in(0, \infty)$ में स्विचबोर्ड पर प्राप्त होने वाले टेलीफोन कॉलों की संख्या $\mathrm{X}(t)$ है, तो $\mathrm{X}(t)$ है :
(1) विविक्त यादृच्छिक चर
(2) विविक्त स्टोकेस्टिक प्रक्रिया, जो समय में विविक्त है
(3) विविक्त स्टोकेस्टिक प्रक्रिया, जो समय में संतत है
(4) संतत स्टोकेस्टिक प्रक्रिया, जो समय में विविक्त है।
67. वह असमिका, जो एक आकलक के न्यूनतम प्रसरण परिबद्ध को प्राप्त करने के लिए उपयोग की जाती है, निम्न है :
(1) चेवीचेव-असमिका
(2) जेन्सन-असमिका
(3) क्रैमर-रॉव असमिका
(4) इनमें से कोई नहीं
68. क्रैमर-रॉव असमिका में, हर कहलाता है :
(1) प्रसरण का निम्न परिबद्ध
(2) प्रसरण का उपरि परिबद्ध
(3) फिशर-सूचना
(4) ये सभी
69. प्रतिचयन बंटन का मानक विचलन कहलाता है :
(1) प्रतिदर्श त्रुटि
(2) प्रतिचयन त्रुटि
(3) मानक त्रुटि
(4) सरल (साधारण) त्रुटि
70. समष्टि माध्य के लिए एक विश्वास्यता अंतराल 56 से 64 तक 95% विश्वास्यता स्तर पर परिकलित किया गया। यदि विश्वास्यता स्तर को 99% बढ़ा दिया जाए, तो विश्वास्यता अंतराल :
(1) संकीर्ण हो जाएगा
(2) वही रहेगा
(3) चौड़ा हो जाएगा
(4) माप में दुगुना हो जाएगा
71. pdf $f(x, \theta)=\theta e^{-\theta x}, x>0$ वाली एक समष्टि में से माप एक का एक यादृच्छिक प्रतिदर्श निकाला जाता है तथा इसका उपयोग $\mathrm{H}_{0}: \theta=1$ बनाम $\mathrm{H}_{1}: \theta=2$ की जाँच में किया जाता है। यदि $x \geq 2$ क्रांतिक क्षेत्र है, तो (α, β) का मान है :
(1) $\left(e^{-2}, e^{-1}\right)$
(2) $\left(e^{-1}, e^{-2}\right)$
(3) $\left(e^{-2}, 1-e^{-4}\right)$
(4) $\left(e^{-2}, e^{-4}\right)$
72. यदि $\mathrm{X}_{1}, \mathrm{X}_{2}, \ldots, \mathrm{X}_{n}$ किसी अपरिमित समष्टि से लिया गया एक यादृच्छिक प्रतिदर्श है, जहाँ $\mathrm{S}^{2}=\frac{1}{n} \sum_{i}\left(\mathrm{X}_{1}-\overline{\mathrm{X}}\right)^{2}$ है, तो समष्टि प्रसरण σ^{2} के लिए अनभिनत आकलक है :
(1) $\frac{1}{n-1} \mathrm{~S}^{2}$
(2) $\frac{n-1}{n} \mathrm{~S}^{2}$
(3) $\frac{1}{n} \mathrm{~S}^{2}$
(4) $\frac{n}{n-1} \mathrm{~S}^{2}$
73. $\tau(\theta)$ के एक आकलक T_{n} की सरल संगतता का अर्थ है :
(1) $\lim _{n \rightarrow \infty} \mathrm{P}_{\theta}\left\{\left|\mathrm{T}_{n}-\tau(\theta)\right|<\varepsilon\right\}=1$
(2) $\lim _{n \rightarrow \infty} \mathrm{P}_{\theta}\left\{\left|\mathrm{T}_{n}-\tau(\theta)\right|<\varepsilon\right\}=0$
(3) $\mathrm{P}_{\theta}\left\{\left|\mathrm{T}_{n}-\tau(\theta)\right|>\varepsilon\right\}=1$
(4) ये सभी
74. $\tau(\theta)$ के आकलकों $\mathrm{T}_{1}, \mathrm{~T}_{2}, \ldots, \mathrm{~T}_{n}$ का एक अनुक्रम श्रेष्ठतम अनंत स्पर्शीय (स्पर्शोन्मुख) प्रसामान्य आकलक कहलाता है, यदि वह निम्न को सन्तुष्ट करता है :
(1) $\sqrt{n}\left[\mathrm{~T}_{n}-\tau(\theta)\right] \sim \mathrm{N}\left(0, \sigma^{2}\right)$
(2) किसी अन्य आकलक T_{n} के प्रसरण की तुलना में, T_{n} का न्यूनतम प्रसरण है।
(3) T_{n} संगत है।
(4) उपर्युक्त सभी
75. रॉव-ब्लैकवेल प्रमेय की सहायता से, न्यूनतम प्रसरण अनभिनत आकलक को निम्न के माध्यम से प्राप्त किया जाता है :
(1) अनभिनत आकलक
(2) सम्पूर्ण प्रतिदर्शज
(3) प्रभावी प्रतिदर्शज
(4) पर्याप्त प्रतिदर्शज
76. प्रतिदर्श चुनने की लाहिडो विधि का अनुप्रयोग निम्न में होता है :
(1) PPSWOR स्कीम
(2) PPSWR स्कीम
(3) मिजुनो-सेन स्कीम
(4) समानुपात और प्रतिशतता के लिए प्रतिचयन
77. गुच्छ प्रतिचयन में, सामान्यतः ' ρ_{w} ' को प्राप्त किया जाता है :
(1) धनात्मक
(2) ऋणात्मक
(3) $0 \leq \rho_{w} \leq 1$
(4) (2) और (3) दोनों
78. सरल यादृच्छिक प्रतिचयन वाले एक बड़े प्रतिदर्श में, अनुपात आकलक का प्रसरण आकलक $\hat{\mathrm{Y}}=\mathrm{X} \overline{\mathrm{Y}}$ से छोटा होता है, यदि X और Y के बीच सहसम्बन्ध है :
(1) $=\frac{1}{2} \frac{\mathrm{CV}(y)}{\mathrm{CV}(x)}$
(2) $=\frac{1}{2} \frac{\mathrm{CV}(x)}{\mathrm{CV}(y)}$
(3) $<\frac{1}{2} \frac{\mathrm{CV}(x)}{\mathrm{CV}(y)}$
(4) $>\frac{1}{2} \frac{\mathrm{CV}(x)}{\mathrm{CV}(y)}$
79. एक क्रमबद्ध प्रतिदर्श का माध्य सरल यादृच्छिक प्रतिदर्श के माध्य से अधिक परिशुद्ध होता है, यदि और केवल यदि :
(1) $\mathrm{S}^{2}<\mathrm{S}_{w}^{2}$
(2) $\mathrm{S}^{2}>\mathrm{S}_{w}^{2}$
(3) $\mathrm{NS}^{2}<\mathrm{S}_{w}^{2}$
(4) $\mathrm{NS}^{2}=\mathrm{S}_{w}^{2}$
80. दो-चरण प्रतिचयन स्कीम चुनते समय, यदि $n=\mathrm{N}$ है, तो यह दो-चरण प्रतिचयन स्कीम रह जाती है :
(1) स्तरीकृत प्रतिचयन
(2) दो-चरण गुच्छ प्रतिचयन
(3) गुच्छ प्रतिचयन
(4) क्रमबद्ध प्रतिचयन
81. एक समष्टि को दो स्तरों में विभाजित किया गया है, ताकि $\mathrm{N}_{1}=300, \mathrm{~N}_{2}=200, \mathrm{~S}_{1}=2$ और $\mathrm{S}_{2}=3$ है। यदि नेमन आबंटन द्वारा माप 24 का एक प्रतिदर्श आबंटित किया जाना है, तो प्रत्येक स्तर से प्रतिदर्श माप है :
(1) $(10,14)$
(2) $(14,10)$
(3) $(13,11)$
(4) $(12,12)$
82. एक 2^{3}-क्रमगुणित प्रयोग में, उपचार प्रभाव

$$
\frac{1}{4}[(a b c)-(b c)+(a b)-(b)-(a c)+(c)-(a)+(1)]
$$

निम्न उपचार के कारण है :
(1) A
(2) B
(3) C
(4) AB
83. 4 ब्लॉकों और 4 उपचारों वाली एक RBD में, जिसमें एक लुप्त मान है, स्वतंत्रता की त्रुटि डिग्री है :
(1) 8
(2) 10
(3) 11
(4) 12
84. किसी 2^{3} भांत (भ्रमित) क्रमगुणित प्रयोग में, a की दो ब्लॉकों के साथ नीचे दर्शाए अनुसार पुनरावर्ती होती है :

ब्लॉक I	ब्लॉक II
$a b c$	$a c$
$b c$	$a b$
a	b
(1)	c

इसमें भ्रमित परस्पर-क्रिया है :
(1) ABC
(2) AB
(3) BC
(4) AC
85. एक संतुलित अपूर्ण ब्लॉक डिजाइन (BIBD) के लिए, निम्नलिखित में से कौन-सा कथन सत्य है ?
(1) $\quad v r=b k$
(2) $\lambda(v-1)=r(k-t)$
(3) $b<v$
(4) $b=k-t$
86. r ब्लॉकों वाले एक 2^{3}-क्रमगुणित प्रयोग में, त्रुटि के लिए स्वतंत्रता की डिग्री है :
(1) $r-1$
(2) $7 r+1$
(3) $7 r-1$
(4) $7(r-1)$
87. एक 7×7 लैटिन वर्ग डिजाइन में F -अनुपात के लिए, स्वतंत्रता की डिग्री है :
(1) $(7,42)$
(2) $(7,30)$
(3) $(6,30)$
(4) $(6,42)$
88. यदि $\left.\underset{\sim}{\mathrm{X}}{ }_{p \times 1} \sim \mathrm{~N}_{p} \underset{\sim}{\underset{\sim}{\mu}}, \Sigma\right)$ है, तो निम्न पर विचार कीजिए :
(i) $\quad{\underset{\sim}{\mathrm{Z}}}_{p \times 1}=\mathrm{D} \underset{\sim}{\mathrm{X}} p \times 1 \sim \mathrm{~N}_{p}\left(\mathrm{D} \underset{\sim}{\mu}, \mathrm{D} \Sigma \mathrm{D}^{\mathrm{T}}\right)$, जहाँ रैंक $\left(\mathrm{D}_{p \times p}\right)=p$ है
(ii) $\quad \underset{\sim}{\mathrm{Z}}{ }_{p \times 1}=\mathrm{D} \underset{\sim}{\mathrm{X}} \underset{p \times 1}{ } \sim \mathrm{~N}_{p}\left(\mathrm{D} \underset{\sim}{\mu}, \mathrm{D}^{\mathrm{T}} \Sigma \mathrm{D}\right)$, जहाँ रैंक $\left(\mathrm{D}_{p \times p}\right)=p$ है
(iii) ${\underset{\sim}{Z}}_{q \times 1}=\mathrm{D} \underset{\sim}{\mathrm{X}} \underset{p \times 1}{ } \sim \mathrm{~N}_{q}\left(\mathrm{D} \underset{\sim}{\mu}, \mathrm{D} \Sigma \mathrm{D}^{\mathrm{T}}\right)$, जहाँ रैंक $\left(\mathrm{D}_{q \times p}\right)=q \leq p$ है
(iv) ${\underset{\sim}{\mathrm{Z}}}_{q \times 1}=\mathrm{D} \underset{\sim}{\mathrm{X}}{ }_{p \times 1} \sim \mathrm{~N}_{q}\left(\mathrm{D} \underset{\sim}{\mu}, \mathrm{D}^{\mathrm{T}} \Sigma \mathrm{D}\right)$, जहाँ रैंक $\left(\mathrm{D}_{q \times p}\right)=q \leq p$ है

यदि D अचर अवयवों का कोई आव्यूह है, तो उपरोक्त में कौन सही है/हैं ?
(1) केवल (ii)
(2) (ii) और (iii) दोनों
(3) (i) और (iii) दोनों
(4) (ii) और (iv) दोनों
89. यदि $\underset{\sim}{\mathrm{X}} \sim \mathrm{N}_{p}(\underset{\sim}{\mu}, \Sigma)$ है, तो $(\underset{\sim}{\mathrm{X}}-\mu)^{\mathrm{T}} \Sigma^{-1}(\underset{\sim}{\mathrm{X}}-\underset{\sim}{\mu})$ निम्न का अनुपालन करता है :
(1) विशार्ट बंटन
(2) χ^{2} बंटन
(3) होटलिंग T^{2} बंटन
(4) इनमें से कोई नहीं
90. यदि Σ_{1} और Σ_{2} दो सहप्रसरण आव्यूह हैं, जिन्हें $\Sigma_{1}=\left(\begin{array}{ccc}14 & 8 & 3 \\ 8 & 5 & 2 \\ 3 & 2 & 1\end{array}\right)$ और $\Sigma_{2}=\left(\begin{array}{lll}6 & 6 & 1 \\ 6 & 8 & 2 \\ 1 & 2 & 1\end{array}\right)$ द्वारा दिया जाता है, तो निम्नलिखित में से कौन सही है ?
(1) $\left|\Sigma_{1}\right|>\left|\Sigma_{2}\right|$ और trace $\left(\Sigma_{2}\right)<\operatorname{trace}\left(\Sigma_{1}\right)$
(2) $\left|\Sigma_{1}\right|>\left|\Sigma_{2}\right|$ और trace $\left(\Sigma_{1}\right)<\operatorname{trace}\left(\Sigma_{2}\right)$
(3) $\left|\Sigma_{2}\right|>\left|\Sigma_{1}\right|$ और $\operatorname{trace}\left(\Sigma_{1}\right)<\operatorname{trace}\left(\Sigma_{2}\right)$
(4) $\left|\Sigma_{2}\right|>\left|\Sigma_{1}\right|$ और $\operatorname{trace}\left(\Sigma_{2}\right)<\operatorname{trace}\left(\Sigma_{1}\right)$
91. कौन-सा बंटन काई-स्क्वायर (वर्ग) बंटन का बहुविचरीय अनुरूप है ?
(1) चरघातांकी बंटन
(2) विशार्ट बंटन
(3) t-बंटन
(4) इनमें से कोई नहीं
92. यदि परिक्षेपण आव्यूह $\Sigma=\left(\begin{array}{ccc}6 & -3 & 0 \\ -3 & 6 & 0 \\ 0 & 0 & 3\end{array}\right)$ के साथ $\underset{\sim}{X}$ एक त्रि-विमीय यादृच्छिक सदिश है, तो प्रथम मुख्य घटक द्वारा स्पष्ट की गई विचरणता का अनुपात निम्न से दिया जाता है :
(1) 65%
(2) 60%
(3) 80%
(4) 62%
93. रैखिक प्रोग्रामन है एक :
(1) अवरोधी इष्टतम तकनीक
(2) सीमित संसाधनों के आर्थिक आबंटन के लिए तकनीक
(3) गणितीय तकनीक
(4) उपर्युक्त सभी
94. अधिकतमीकरण रैखिक प्रोग्रामन मॉडल के लिए, सिम्पलेक्स विधि समाप्त कर दी जाती है, जब सभी मान :
(1) $z_{j}-c_{j} \geq 0$
(2) $z_{j}-c_{j} \leq 0$
(3) $z_{j}-c_{j}=0$
(4) $z_{j} \leq 0$
95. यदि n कार्यकर्त्ता हैं और n कार्य हैं, तो वहाँ होंगे :
(1) n ! हल
(2) $(n-1)$! हल
(3) $(n!)^{n}$ हल
(4) n हल
96. पंक्तिबद्ध पद्धति में किस अभिलक्षण का अनुप्रयोग किया जाता है ?
(1) ग्राहक समष्टि
(2) आगमन की प्रक्रिया
(3) दोनों (1) और (2)
(4) न तो (1) और न ही (2)
97. कॉलिंग (बुलाती) समष्टि को अपरिमित परिकल्पित किया जाता है, जब :
(1) आगमन वाले परस्पर स्वतंत्र होते हैं।
(2) पद्धति की धारिता अपरिमित होती है।
(3) सेवा दर आगमन दर से तीव्र होती है।
(4) उपर्युक्त सभी
98. निम्नलिखित में से कौन एक पंक्तिबद्ध पद्धति के लिए, एक मुख्य संकारक (संचालन) अभिलक्षणिक नहीं है ?
(1) उपयोगिता कारण
(2) प्रतिशत कार्यहीन समय
(3) पद्धति और पंक्ति में इंतजार के लिए व्यतीत किया गया औसत समय
(4) उपर्युक्त में से कोई नहीं
99. एक पंक्तिबद्ध पद्धति के आर्थिक विश्लेषण के लिए, निम्नलिखित में से कौन-से लागत आकलन और प्रदर्शन मापक उपयोग नहीं किए जाते हैं ?
(1) प्रति सर्वर प्रति समय इकाई लागत
(2) पद्धति में इंतजार कर रहे एक ग्राहक के लिए प्रति समय इकाई लागत
(3) पद्धति में ग्राहकों की औसत संख्या
(4) पद्धति में ग्राहकों का औसत इंतजार करने का समय
100. असाइनमेंट (कार्यभार) समस्या को यातायात समस्या की एक विशिष्ट स्थिति माना जाता है, क्योंकि :
(1) पंक्तियों की संख्या स्तंभों की संख्या के बराबर होती है।
(2) सभी $\mathrm{X}_{i j}=0$ या 1 हैं।
(3) सभी रिम प्रतिबंध 1 हैं।
(4) उपर्युक्त सभी

Space for Rough Work रफ कार्य के लिए

Space for Rough Work रफ कार्य के लिए

