KEY FOR PHDSTAT (Entrance Test held dated on 07.01.2024)

Q. N	D. ANS.					
1	4					
2	4					
3	3					
4	4					
5	3					
6	1					
7	2					
8	4					
9	3					
10	3					
11	3					
12	3					
13	4					
14	2					
15	3					
16	1					
17	1					
18	4					
19	4					
20	3					
21	4					
22	2					
23	2					
24	3					
25	2					
26	4					
27	3					
28	2					
29	1					
30	2					

	07				
Q. NO	ANS.				
31	2				
32		3			
33		4			
34		2			
35		4			
36		3			
37		2			
38		3			
39		2			
40		1			
41		2			
42		4			
43		4			
44		4			
45		2			
46		3			
47	L	4			
48	L	4			
49	L	2			
50	L	4			
51		1			
52		3			
53		1			
54		4			
55		2			
56		2			
57		2			
58		3			
59		1			
60		2			

	Q. NO.	ANS.					
	61	3					
	62	4					
	63	3					
	64		1				
	65		2				
	66		3				
	67		3				
	68		3				
	69		3				
	70		3				
	71		3				
	72		4				
	73		1				
	74		4				
	75		4				
L	76		1				
L	77		2				
L	78		4				
L	79		1				
L	80		1				
	81		4				
	82		4				
	83		1				
	84		3				
	85		1				
	86		4				
	87		3				
	88		3				
	89		2				
	90		4				
		_					

Q. NO.	ANS.
91	2
92	2
93	4
94	1
95	1
96	3
97	1
98	4
99	4
100	4

M.12/01/2024

PHDSTAT

Ph. D. (Statistics) Entrance Test, July, 2023

Time: 3 Hours Maximum Marks: 100

GENERAL INSTRUCTIONS

- 1. All questions are **compulsory**. Each question carries **1** mark.
- 2. No cell phones, calculators, books, slide-rules, notebooks or written notes, etc. will be allowed inside the examination hall.
- 3. You should follow the instructions given by the Centre Superintendent and by the Invigilator at the examination venue. If you violate the instructions, you will be disqualified.
- 4. Any candidate found copying or receiving or giving assistance in the examination will be disqualified.
- 5. The Question Booklet and the OMR Response Sheet (Answer Sheet) would be supplied to you by the Invigilators. After the examination is over, you should hand over the OMR Response Sheet and Question Booklet to the Invigilator before leaving the examination hall. Any candidate who does not return the OMR Response Sheet will be disqualified and the University may take further action against him/her.
- 6. All rough work is to be done on the question paper itself and not on any other paper. Scrap paper is not permitted. For arriving at answers you may work in the margins, make some markings or underline in the test booklet itself.
- 7. The University reserves the right to cancel the result of any candidate who impersonates or uses/adopts other malpractices or uses any unfair means. The University may also follow a procedure to verify the validity of scores of all examinees uniformly. If there is substantial indication that your performance is not genuine, the University may cancel your result.

How to fill up the information on the OMR Response Sheet (Examination Answer Sheet)

- 1. Write your complete Enrolment No. in 10 digits. This should correspond to the enrolment number indicated by you on the OMR Response Sheet. Also write your correct name, address with pin code in the space provided. Put your signatures on the OMR Response Sheet with date. Ensure that the Invigilator in your examination hall also puts his signatures with date on the OMR Response Sheet at the space provided.
- 2. On the OMR Response Sheet student's particulars are to be filled in by blue/black ball pen also. Use blue/black ball pen for writing the Enrolment No. and Examination Centre Code as well as for blackening the circle bearing the correct answer number against the serial number of the question.
- 3. Do not make any stray remarks on this sheet.
- 4. Write correct information in numerical digits in Enrolment No. and Examination Centre Code Columns. The corresponding circle should be dark enough and should be filled in completely.
- 5. Each question is followed by four probable answers which are numbered (1), (2), (3) and (4). You should select and show only one answer to each question considered by you as the most appropriate or the correct answer. Select the most appropriate answer. Then by using blue/black ball pen, blacken the circle bearing the correct answer number against the serial number of the question.
- 6. No credit will be given if more than one answer is given for one question. Therefore, you should select the most appropriate answer.
- 7. You should not spend too much time on one question. If you find any particular question difficult, leave it and go to the next. If you have time left after answering all the questions, you may go back to the unanswered question.
- 8. There is no negative marking for wrong answers.

1. The average annual rainfall (in mm) for 5 years in a country is given below:

Year	Average Rainfall
2018	128
2019	130
2020	122
2021	124
2022	120

The given data series is categorised as:

- (1) Individual Series
- (2) Continuous Series

(3) Discrete Series

- (4) Time Series
- 2. Which of the following is most likely a continuous quantitative variable?
 - (1) Total runs scored by a batsman in the Cricket World Cup
 - (2) Population of India
 - (3) Number of televisions sold by electronics store
 - (4) Time taken to complete the entrance examination
- 3. The probability of drawing a sample of 10 units out of 100 units using SRSWOR is:
 - (1) $\frac{1}{10!}$

 $(2) \frac{1}{100}$

(3) $\frac{1}{^{100}C_{10}}$

- $(4) \frac{10}{100}$
- 4. Mean of sampling distribution of a statistic is called :
 - (1) Sampling Error
- (2) Type-I Error
- (3) Non-sampling Error
- (4) None of these
- 5. The sample selection procedure used to select cricket team for the world cup is :
 - (1) Random sampling
- (2) Systematic sampling
- (3) Purposive sampling
- (4) Cluster sampling

PHDS	STAT		(4)	(P-30)			
	(3)	Inverse sampling	(4)	All of these			
	(1)	SRSWOR	(2)	Stratified sampling			
	poss	esses a rare attribute, is :					
11.	An	appropriate sampling procefure	to s	select a sample containing n units which			
	(3)	$Var(\overline{y}_1) \leq Var(\overline{y}_2)$	(4)	$Var(\overline{y}_1) \ge Var(\overline{y}_2)$			
	(1)	$Var(\overline{y}_1) = Var(\overline{y}_2)$	(2)	$Var(\overline{y}_1) = 1/Var(\overline{y}_2)$			
	the j	population mean \overline{Y} , then :					
10.	Let	\overline{y}_1 be the sample mean under s	SRSW	VOR and \bar{y}_2 under SRSWR for estimating			
	(3)	Human bias	(4)	Responders can refuse to participate			
	(1)	Methods are expensive	(2)	Results are never representative Responders can refuse to participate			
		niques?	(0)				
9.	Whi	ch ONE of the following is the	mai	n problem with non-probability sampling			
	(3)	Processing error	(4)	Mean squared error			
	(1)	Measurement error	(2)	Non-response error			
8.	Whi	ch of the following is NOT a type	e of n	on-sampling error ?			
	(4)	It is always negative.					
	(3)	It is always positive.					
	(2)		nple s	statistic and the population parameter.			
	(1)	Sampling error is equal to popu					
7.	Whi	ch one of the following is true fo	r the	sampling error ?			
	(4)	Systematic sampling					
	(3)	Stratified sampling					
	(2)	Purposive sampling					
	(1)	Convenience or Accidental sam	pling				
	called:						
6.	If a	sample is selected with the h	it-and	d-miss approach, the sampling method is			

1:	2. Wh	ich of the following is the lowest	possi	ble form of the Latin square design?
	(1)	(1×1)	(2)	(2×2)
	(3)	(3×3)	(4)	(4×4)
1		•		mbered Delhi metro pillars with a random she has thus drawn a sample.
	(1)	Simple Random	(2)	Sequential
	(3)	Stratified	(4)	Systematic
1		e data taken from the porta vernment of India' will be conside		the 'India Meteorological Department, s:
	(1)	Primary data	(2)	Secondary data
	(3)	Both (1) and (2) above	(4)	Neither Primary nor Secondary data
1				opulation of locality is first divided into ample is drawn from each group is called:
	(1)	Probability Sampling	(2)	Simple Random Sampling
	(3)	Stratified Sampling	(4)	Cluster Sampling
1	_	opose 2 products are selected at a		m without replacement out of 10 products, amples will be:
	(1)	45	(2)	40
	(3)	201	(4)	5
1		ich of the following variables ca	annot	take all possible values within a certain
	(1)	Discrete variable	(2)	Continuous variable
	(3)	Intervening variable	(4)	Extraneous variable
1		ich of the following graphical requency that may be cumulated do	_	ntation involve the plotting of cumulative ard or upward?
	(1)	Frequency polygon	(2)	Line graph
	(3)	Histogram	(4)	Ogive
P	HDSTAT		(5)	(P-30)

19.	Which of the following measurement scale is the most appropriate to describe the						
	time	e taken to finish entrance exam	of the	Ph.D. in Statistics?			
	(1)	Nominal	(2)	Ordinal			
	(3)	Interval	(4)	Ratio			
20.		random variable X ~ Bin(48, able X will be:	3/4)	then standard deviation of the random			
	(1)	$\sqrt{3}$	(2)	$\frac{3}{4}\log 48$			
	(3)	3	(4)	$48\log\frac{3}{4}$			
21.	If a X is		and e	expected value of X is 40, then median of			
	(1)	36	(2)	44			
	(3)	38	(4)	40			
22.	If a	random variable X ~ Pois(3) the	n P(X	= 2) will be equal to:			
	(1)	$rac{9}{2}e^{-2}$	(2)	$\frac{9}{2}e^{-3}$ $\frac{2}{9}e^{-3}$			
	(3)	$rac{2}{9}e^{-2}$	(4)	$\frac{2}{9} e^{-3}$			
23.	If a	random variable X ~ N(40, 9) th	en P	X = 2) will be equal to:			
	(1)	$\frac{9}{40}$	(2)	0			
	(3)	$\frac{40}{81}$	(4)	$\frac{81}{1600}$			
24.	If ea	ach observation of a set is divided	d by 2	, then the mean of new values :			
	(1)	is two times of original mean	(2)	is decreased by 2			
	(3)	is half of the original mean	(4)	remains the same			
PHD	STAT		(6)	(P-30)			

25.	Geo	metric mean is better than other	r mea	ins when the data are :
	(1)	positive as well as negative	(2)	in ratios or percentages
	(3)	binary	(4)	on interval scale
26.	The	correct relationship between A.	M., G	.M. and H.M. is :
	(1)	A.M. = G.M. = H.M.	(2)	$G.M. \geq A.M. \geq H.M.$
	(3)	$H.M. \geq G.M. \geq A.M.$	(4)	$A.M. \geq G.M. \geq H.M.$
27.	Two	series having the same mean, r	nedia	n and mode may :
	(1)	have same values	(2)	not have same values
	(3)	Both (1) and (2)	(4)	None of both (1) and (2)
28.	In ca	ase of weighted mean, the accur	acy o	r utility of the mean :
	(1)	Decreases	(2)	Increases
	(3)	Remains unaffected	(4)	None of these
29.	Whi	ch one of the given measures of	$_{ m dispe}$	ersion is considered best?
	(1)	Standard deviation	(2)	Range
	(3)	Variance	(4)	Coefficient of variation
30.	For	a symmetrical distribution,	Md	+ Q.D. covers (as Md = Median and
	Q.D	. = Quartile Deviation) :		
	(1)	25 percent of the observations	(2)	50 percent of the observations
	(3)	75 percent of the observations	(4)	100 percent of the observations
31.	If a	random variable X has mean 3	and	standard deviation 5, then the variance of
	the	variable $Y = 2X - 5$ is:		
	(1)	45	(2)	100
	(3)	15	(4)	40
32.	If th	e coefficient of Kurtosis γ_2 of a	distri	bution is zero, the frequency curve is:
	(1)	Leptokurtic	(2)	Platykurtic
	(3)	Mesokurtic	(4)	All of these
PHDS	STAT		(7)	(P-30)

- 33. Which of the following distributions has memoryless property?
 - **(1) Binomial**

(2)Normal

(3)Gamma

- (4)Exponential
- 34. Regression analysis can be used for:
 - (1)Reducing the length of confidence interval
 - (2)Prediction of dependent variable
 - Knowing the true effect of certain treatments (3)
 - (4)All of the above
- The formula for probable error (P.E.) is: 35.

(1) P.E. =
$$0.6745\sqrt{\frac{1-r^2}{n}}$$
 (2) P.E. = $0.6745\sqrt{\frac{1-r^2}{n-2}}$

(2) P.E. =
$$0.6745\sqrt{\frac{1-r^2}{n-2}}$$

(3) P.E. =
$$0.6745 \frac{1-r^2}{n}$$
 (4) P.E. = $0.6745 \frac{1-r^2}{\sqrt{n}}$

(4) P.E. =
$$0.6745 \frac{1-r^2}{\sqrt{n}}$$

The hypothesis $H_0: \rho = \rho_0$ (a constant) can be tested by making use of the 36. transformation:

$$(1) \quad Z_{\rho} = log_{10}\left(\frac{1+\rho}{1-\rho}\right) \qquad \qquad (2) \quad Z_{\rho} = log_{10}\left(\frac{1-\rho}{1+\rho}\right)$$

$$(2) \quad Z_{\rho} = log_{10} \left(\frac{1 - \rho}{1 + \rho} \right)$$

(3)
$$Z_{\rho} = \frac{1}{2} \log_e \left(\frac{1+\rho}{1-\rho} \right)$$

$$(4) \quad \mathbf{Z}_{\rho} = \log_{e} \left(\frac{1 - \rho}{1 + \rho} \right)$$

- If the value of coefficient of determination R² is close to 1, it leads to the conclusion 37. that:
 - (1)There is a lack of linear relationship
 - (2)Linear relation is almost perfect
 - (3)There is a curvilinear relation
 - (4) All of the above

20	7 731	1 1 1111 000 11			
39.	The	probability of Type II error is ca	alled :		
	(1)	α	(2)	β	
	(3)	$1-\alpha$	(4)	$1 - \beta$	
40.	The	entire large sample theory is ba	ised o	n the assumption that :	
	(1)	Sampling distribution of a stat	istic i	s approximately normal	
	(2)	Sampling distribution of a stat	istic i	s far from normal	
	(3)	Sampling distribution of a stat	istic i	s approximately Log-normal	
	(4)	None of the above			
41.	H_0	: $\mu_1 = \mu_2$ means :			
	(1)	There is no significant differen	ce bet	tween the population medians	
	(2)	There is no significant differen	ce bet	tween the population means	
	(3)	There is significant difference	betwe	en the population means	
	(4)	None of the above			
42.	t-dis	stribution is given by :			
	(1)	Laplace	(2)	Shewart	
	(3)	Hurwitz	(4)	W. S. Gosset	
43.	Whe	en a null hypothesis is $H_0: \mu =$	μ_0 , the	he alternative hypothesis cannot be :	
	(1)	$H_1: \mu > \mu_0$	(2)	$H_1: \mu < \mu_0$	
	(3)	$H_1: \mu \neq \mu_0$	(4)	$H_1: \mu = \mu_0$	
PHD	STAT		(9)		(P-30)

STAT		(10)		(P-30)							
(3)	Descriptive research	(4)	Analytical research								
(1)	Experimental research	(2)	Historical research								
The	conclusion of which type of rese	arch	cannot be generalized ?								
(4)	Overview of the previously pub	olishe	d works on specific topic								
(3)	Interpretation of data										
(2)	Testing of hypothesis										
(1)	Formation of theoretical frame	work	for the analysis purpose								
Rev	iew of literature means :										
(3)	Descriptive research	(4)	Longitudinal research								
(1)	Conceptual research	(2)	Qualitative research								
In w	which type of research, the resear	rch is	carried on several time periods?								
(3)	Observational research	(4)	Applied research								
(1)	Quantitative research	(2)	Qualitative research								
Whi	ch one is not a type of research	?									
(4)	None of the above										
(3)	Searching for data analysis pro	ocedu	re								
(2)	Framing research question bas	sed on	objectives								
(1)	Formulating research hypotheses										
Тор	pursue research, which of the following is priorly required?										
(4)) All of the above										
(3)	Voyage of discovery										
(2)	An original contribution to exis	sting	knowledge								
(1)	Art of scientific investigation										
	(2) (3) (4) To p (1) (2) (3) (4) Whi (1) (3) In w (1) (3) Rev: (1) (2) (3) (4) The (1) (3)	(2) An original contribution to exist (3) Voyage of discovery (4) All of the above To pursue research, which of the folication (1) Formulating research hypothes (2) Framing research question base (3) Searching for data analysis professor (4) None of the above Which one is not a type of research (1) Quantitative research (3) Observational research (1) Conceptual research (1) Conceptual research (2) Descriptive research Review of literature means: (1) Formation of theoretical frame (2) Testing of hypothesis (3) Interpretation of data (4) Overview of the previously put (1) Experimental research (3) Descriptive research (3) Descriptive research	(2) An original contribution to existing (3) Voyage of discovery (4) All of the above To pursue research, which of the following (1) Formulating research hypotheses (2) Framing research question based or (3) Searching for data analysis procedur (4) None of the above Which one is not a type of research? (1) Quantitative research (2) (3) Observational research (4) In which type of research, the research is (1) Conceptual research (2) (3) Descriptive research (4) Review of literature means: (1) Formation of theoretical framework (2) Testing of hypothesis (3) Interpretation of data (4) Overview of the previously published The conclusion of which type of research (1) Experimental research (2) (3) Descriptive research (4)	(2) An original contribution to existing knowledge (3) Voyage of discovery (4) All of the above To pursue research, which of the following is priorly required? (1) Formulating research hypotheses (2) Framing research question based on objectives (3) Searching for data analysis procedure (4) None of the above Which one is not a type of research? (1) Quantitative research (2) Qualitative research (3) Observational research (4) Applied research In which type of research, the research is carried on several time periods? (1) Conceptual research (2) Qualitative research (3) Descriptive research (4) Longitudinal research Review of literature means: (1) Formation of theoretical framework for the analysis purpose (2) Testing of hypothesis (3) Interpretation of data (4) Overview of the previously published works on specific topic The conclusion of which type of research cannot be generalized? (1) Experimental research (2) Historical research (3) Descriptive research (4) Analytical research							

44. Research is:

- 50. Research related to pure mathematics comes under which type of research?
 - (1) Applied research
- (2) Historical research
- (3) Descriptive research
- (4) Fundamental resaerch
- 51. $A = \{a, b, c\}$ is a sample space where outcome 'a' is twice as likely as outcome 'b', and outcome 'b' is half as likely as outcome 'c'. Then P(b) will be:
 - $(1) \quad \frac{1}{5}$

(2) $\frac{2}{5}$

 $(3) \quad \frac{3}{5}$

- $(4) \frac{4}{5}$
- 52. If $P(A) = \frac{1}{2}$, $P(B^c) = \frac{11}{16}$ and $P(A \cup B) = \frac{3}{4}$, find $P(A \cap B)$:
 - (1) $\frac{15}{16}$

(2) $\frac{1}{8}$

 $(3) \frac{1}{16}$

- $(4) \frac{11}{16}$
- 53. A wooden cube of size $5 \times 5 \times 5$ is painted red and then sliced into 125 cubes of size $1 \times 1 \times 1$. One of these cubes is taken at random. What is the probability that it is not painted?
 - $(1) \quad \frac{27}{125}$

(2) $\frac{8}{125}$

 $(3) \quad \frac{36}{125}$

- $(4) \quad \frac{54}{125}$
- 54. An $m \times n$ rectangle of men is formed with m men per row and n men per column. Find the probability that a man finds himself in the outer perimeter of the rectangle.
 - $(1) \quad \frac{4}{mn}$

(2) $\left(\frac{1}{m} + \frac{1}{n}\right)$

 $(3) \quad \frac{2(m+n)}{mn}$

 $(4) \quad \frac{2m+2n-4}{mn}$

55.	Pawan hits a target with probabil	lity 0	.8 and	Sohan	hits	the	same	target	with
	probability 0.75. If they aim at the	targe	t, what	is the	proba	bilit	y that	neithe	r will
	hit it?								
	(1) 0.2	(2)	0.05						

56. Two fair dice, one of which is an ordinary die, and the other has sides with 1, 3, 5,7, 9, 10 are rolled at random. Find the probability of rolling a sum of 12.

(4)

0.6

(1)
$$\frac{1}{6}$$
 (2) $\frac{1}{12}$ (3) $\frac{1}{18}$ (4) $\frac{1}{26}$

(3)

0.15

57. A multiple-choice exam has 20 questions. Each question has 3 choices, of which exactly one is the right answer. A person answers this exam randomly. What is the probability of scoring exactly 12 correct?

(1)
$$\binom{20}{12} \left(\frac{1}{3}\right)^{12}$$
 (2) $\binom{20}{12} \left(\frac{1}{3}\right)^{12} \left(\frac{2}{3}\right)^{8}$

(3)
$$\binom{20}{12} \left(\frac{1}{3}\right)^{12} \binom{20}{8} \left(\frac{2}{3}\right)^{8}$$
 (4) $\frac{3}{5}$

58. You play a game as follows: you throw a blue and a red die. If the sum of the dots is in {2, 3, 4}, you earn ₹ 1. If it is in {5, 6, 7}, you lost ₹ 1. If it is in {8, 9, 10}, you win ₹ 2. If it is in {11, 12}, you lose ₹ 2. What is your average gain after each game?

 $(1) \quad \stackrel{?}{\stackrel{?}{\sim}} 0 \qquad \qquad (2) \quad \stackrel{?}{\stackrel{?}{\sim}} 1.50$

(3) ₹ 0.25 (4) ₹ 0.33

Questions 59 and 60 are based on this situation: An unbiased coin with probability of showing heads 3/4 and probability of showing tails 1/4 is flipped three times.

- 59. What is the probability of obtaining no heads?
 - $(1) \quad \frac{1}{64}$

 $(2) \quad \frac{27}{64}$

 $(3) \quad \frac{37}{64}$

- $(4) \quad \frac{63}{64}$
- 60. What is the probability of obtaining exactly one head?
 - $(1) \quad \frac{1}{64}$

(2) $\frac{9}{64}$

 $(3) \quad \frac{37}{64}$

 $(4) \quad \frac{27}{64}$

Questions 61 and 62 are based on this information: An absolutely continuous random variable X has the following probability density function (pdf):

$$f(x) = \begin{cases} \frac{k}{x^2}, & \text{if } 1 \le x \le 3\\ 0, & \text{otherwise} \end{cases}$$

where k is a constant.

- 61. The value of k for the given pdf is :
 - $(1) \quad \frac{1}{2}$

(2) 2

 $(3) \quad \frac{3}{2}$

- $(4) \frac{2}{3}$
- 62. The value of $P(X \ge 2)$ for the given pdf is :
 - $(1) \frac{2}{3}$

(2) $\frac{1}{2}$

(3) $\frac{1}{3}$

- $(4) \frac{1}{4}$
- 63. Stochastic processes are:
 - (1) Random in nature
 - (2) Function of time
 - (3) Random in nature and a function of time
 - (4) None of the above

	(1)	Deterministic model	(2)	Stochastic model				
	(3)	Both (1) and (2)	(4)	None of these				
65.								
	(1)	Weak stationary process						
	(2)	Strong stationary process						
	(3)	Process with independent incre	emen	ts				
	(4)	Markov process						
66.			calls	received at switchboard in $(0,t]t \in (0,\infty)$,				
 (3) Both (1) and (2) (4) None of these (5) {X(t), t ∈ T} is a stochastic process. If the joint distribution of X_{t1}, X_{t2},, X_{tn} and X_{t1+h}, X_{t2+h} + + X_{tn+h} is same for all h > 0; then X(t) is: (1) Weak stationary process (2) Strong stationary process (3) Process with independent increments (4) Markov process (5) If X(t) is the number of telephone calls received at switchboard in (0, t]t ∈ (0, ∞) then X(t) is: (1) Discrete random variable (2) Discrete stochastic process discrete in time (3) Discrete stochastic process continuous in time (4) Continuous stochastic process discrete in time (5) The inequality which is used to obtain minimum variance bound of an estimator is (1) Chebychev's inequality (2) Jenson's inequality (3) Cramer-Rao inequality, the denominator is called: (1) Lower bound of variance (2) Upper bound of variance (3) Fisher's information (4) All of these (5) The standard deviation of sampling distribution is known as: (1) Sample error (2) Sampling error (3) Standard error (4) Simple error 								
	(2)	 (2) Discrete stochastic process discrete in time (3) Discrete stochastic process continuous in time 						
	(3)	Discrete stochastic process continuous in time						
	(4)	Continuous stochastic process	discre	ete in time				
67.	The	inequality which is used to obta	in mi	inimum variance bound of an estimator is :				
	(1)	Chebychev's inequality	(2)	Jenson's inequality				
	(3)	Cramer-Rao inequality	(4)	None of these				
68.	In tl	ne Cramer-Rao inequality, the d	enom	ainator is called :				
	(1)	Lower bound of variance	(2)	Upper bound of variance				
	(3)	Fisher's information	(4)	All of these				
69.	The	standard deviation of sampling	distr	ibution is known as :				
	(1)	Sample error	(2)	Sampling error				
	(3)	Standard error	(4)	Simple error				
PHDS	STAT		(14)	(P-30)				

Which one of the following models is non-probabilistic model?

A 95% confidence interval for population mean is calculated to be 56 to 64. If the confidence level is increased to 99%, the confidence interval will:

(1) Become narrower (2)Remain the same

(3)Become wider (4)Double in size

A random sample of size one is drawn from a population with pdf 71. $f(x,\theta)=\theta e^{-\theta x}, x>0$ and is used to test $H_0:\theta=1$ versus $H_1:\theta=2$. If $x\geq 2$ is critical region, then the value of (α, β) is:

(1) (e^{-2}, e^{-1})

(2) (e^{-1}, e^{-2})

(3) $(e^{-2}, 1 - e^{-4})$

(4) (e^{-2}, e^{-4})

If $X_1, X_2, ..., X_n$ is a random sample from an infinite population where $S^2 = \frac{1}{n} \sum (X_1 - \bar{X})^2$, the unbiased estimator for the population variance σ^2 is:

(1) $\frac{1}{n-1}$ S²

 $(2) \quad \frac{n-1}{n} S^2$

(3) $\frac{1}{n}$ S²

(4) $\frac{n}{n-1}$ S²

Simple consistency of an estimator T_n of $\tau(\theta)$ means : 73.

 $\lim_{n\to\infty} P_{\theta} \left\{ \mid T_n - \tau(\theta) \mid <\epsilon \right\} = 1 \quad (2) \quad \lim_{n\to\infty} P_{\theta} \left\{ \mid T_n - \tau(\theta) \mid <\epsilon \right\} = 0$

(3) $P_{\theta} \{ | T_n - \tau(\theta) | > \varepsilon \} = 1$ (4) All of these

A sequence of estimator $T_1, T_2,, T_n$ of $\tau(\theta)$ is known as best asymptotically normal estimator if it satisfies:

(1) $\sqrt{n} \left[T_n - \tau(\theta) \right] \sim N(0, \sigma^2)$

- T_n has minimum variance as compared to the variance of any other estimator (2)
- T_n is consistent (3)
- (4) All of the above

75.	With the help of Rao-Blackwell theorem, the minimum variance unbiased estimator					
	is ob	otained through:				
	(1)	Unbiased estimator	(2)	Complete statistic		
	(3)	Efficient statistic	(4)	Sufficient statistic		
76.	Lah	iri method of sample selection is	s appl	icable in :		
	(1)	PPSWOR Scheme	(2)	PPSWR Scheme		
	(3)	Midzuno-Sen Scheme	(4)	Sampling for proportion and percentage		
77.	In c	luster sampling, generally ' ρ_w ' i	is fou	nd to be:		
	(1)	Positive	(2)	Negative		
	(3)	$0 \le \rho_w \le 1$	(4)	Both (2) and (3)		
78.	In l	arge sample with simple rand	lom s	ampling, the ratio estimator has smaller		
variance than the estimator $\hat{Y}=X\overline{Y}$, if correlation between X and Y is :						
	(1)	$= \frac{1}{2} \frac{\mathrm{CV}(y)}{\mathrm{CV}(x)}$	(2)	$= \frac{1}{2} \frac{\mathrm{CV}(x)}{\mathrm{CV}(y)}$		
	(3)	$< \frac{1}{2} \frac{\mathrm{CV}(x)}{\mathrm{CV}(y)}$	(4)	$> \frac{1}{2} \frac{\mathrm{CV}(x)}{\mathrm{CV}(y)}$		
79.	The	mean of a systematic sample is	s mor	e precise than the mean of simple random		
	sam	ple if and only if :				
	(1)	$S^2 < S_w^2$	(2)	$\mathbf{S}^2 > \mathbf{S}_w^2$		
	(3)	$\mathrm{NS}^2 < \mathrm{S}_w^2$	(4)	$NS^2 = S_w^2$		
80.	Whi	ile adopting two-stage samplin	g sch	eme, if $n = N$, then two-stage sampling		
	sche	eme reduces to :				
	(1)	Stratified sampling	(2)	Two-stage cluster sampling		
	(3)	Cluster sampling	(4)	Systematic sampling		

81. A population is divided into two strata such that:

$$N_1 = 300, N_2 = 200, S_1 = 2, S_2 = 3$$

If a sample of size 24 is to be allocated by Neyman allocation then the sample strata sizes from each stratum are:

(1) (10, 14)

(2) (14, 10)

(3) (13, 11)

(4) (12, 12)

82. In a 2^3 -factorial experiment, the treatment effect

$$\frac{1}{4} \big[(abc) - (bc) + (ab) - (b) - (ac) + (c) - (a) + (1) \big]$$

is due to the treatment:

(1) A

(2) B

(3) C

(4) AB

83. In a RBD with 4 blocks and 4 treatments having one missing value, the error degree of freedom is :

(1) 8

(2) 10

(3) 11

(4) 12

84. In a 2^3 confounding factorial experiment a replicate with two blocks is given as follows:

Block I	Block II
abc	ac
bc	ab
a	b
(1)	c

The confounded interaction in it, is:

(1) ABC

(2) AB

(3) BC

(4) AC

85. For a balanced incomplete block design (BIBD) which of the following is true?

(1) vr = bk

 $(2) \quad \lambda(v-1) = r(k-t)$

(3) b < v

(4) b = k - t

86. In a 2^3 factorial experiment with r blocks, the degrees of freedom for error is :

(1) r-1

(2) 7r + 1

(3) 7r - 1

(4) 7(r-1)

- 87. The degrees of freedom for F-ratio in a 7×7 Latin square design is:
 - (1) (7, 42)

(2) (7,30)

(3) (6,30)

- (4) (6, 42)
- 88. If $X_{p\times 1} \sim N_p$ (μ , Σ), then consider the following:
 - (i) $Z_{p\times 1} = DX_{p\times 1} \sim N_p(D\mu, D\Sigma D^T)$, where rank $(D_{p\times p}) = p$
 - (ii) $Z_{p\times 1} = DX_{p\times 1} \sim N_p(D\mu, D^T\Sigma D)$, where rank $(D_{p\times p}) = p$
 - (iii) $\mathbf{Z}_{q \times 1} = \mathbf{D} \mathbf{X}_{p \times 1} \sim \mathbf{N}_q(\mathbf{D} \mathbf{\mu}, \ \mathbf{D} \mathbf{\Sigma} \ \mathbf{D}^T)$, where rank $(\mathbf{D}_{q \times p}) = q \leq p$
 - $\text{(iv)} \quad \mathbf{Z}_{q\times 1} \,=\, \mathbf{D}\mathbf{X}_{p\times 1} \,\, \sim \, \mathbf{N}_q(\mathbf{D}\mathbf{\underline{\mu}}, \,\, \mathbf{D}^{\mathrm{T}}\mathbf{\Sigma} \,\, \mathbf{D}) \,, \, \text{where rank} \,\, (\mathbf{D}_{q\times p}) \,=\, q \, \leq \, p$

If D is any matrix of constant elements, then which of the above is/are correct?

(1) Only (ii)

(2) Both (ii) and (iii)

(3) Both (i) and (iii)

- (4) Both (ii) and (iv)
- 89. If $\tilde{\mathbf{X}} \sim \mathbf{N}_p(\tilde{\mathbf{\mu}}, \Sigma)$, then $(\tilde{\mathbf{X}} \mathbf{\mu})^T \Sigma^{-1}(\tilde{\mathbf{X}} \tilde{\mathbf{\mu}})$ follows:
 - (1) Wishart distribution
- (2) χ^2 distribution
- (3) Hotelling's T² distribution
- (4) None of these
- 90. If Σ_1 and Σ_2 are the two covariance matrices given by :

$$\Sigma_1 = \begin{pmatrix} 14 & 8 & 3 \\ 8 & 5 & 2 \\ 3 & 2 & 1 \end{pmatrix} \text{ and } \Sigma_2 = \begin{pmatrix} 6 & 6 & 1 \\ 6 & 8 & 2 \\ 1 & 2 & 1 \end{pmatrix}$$

Which of the below is correct?

- (1) $|\Sigma_1| > |\Sigma_2|$ and trace $(\Sigma_2) < \text{trace}(\Sigma_1)$
- (2) $\mid \Sigma_1 \mid > \mid \Sigma_2 \mid$ and trace $(\Sigma_1) < \operatorname{trace}(\Sigma_2)$
- $(3) \quad \mid \Sigma_{2} \mid > \mid \Sigma_{1} \mid \text{ and } \operatorname{trace}\left(\Sigma_{1}\right) < \operatorname{trace}\left(\Sigma_{2}\right)$
- (4) $\mid \Sigma_2 \mid > \mid \Sigma_1 \mid$ and $\operatorname{trace}(\Sigma_2) < \operatorname{trace}(\Sigma_1)$

PHD	STAT		(19)		(P-30)
	(3)	Both (1) and (2)	(4)	Neither (1) nor (2)	
	(1)	Customer population	(2)	Arrival process	
96.	Whi	ch of the following charact	eristics ap	ply to queueing system?	
	(3)	$(n!)^n$ solutions	(4)	n solutions	
	(1)	n! solutions	(2)	(n-1)! solutions	
95.	If th	ere were n workers and n j	jobs, there	would be:	
	(3)	$z_j - c_j = 0$	(4)	$z_j \leq 0$	
		$z_j - c_j \ge 0$		$z_j - c_j \le 0$	
		n all values :	(0)	~ 0	
94.		maximisation linear prog	ramming	model, the simplex meth	od is terminated
	(4)	All of the above			
	(3)	Mathematical technique			
	(2)	Technique for economic a	llocation o	f limited resources	
	(1)	Constrained optimization	technique)	
93.	Line	ear programming is a :			
	(3)	80%	(4)	62%	
	(1)	65%	(2)	60%	
		n by :			
		the proportion of variab	oility expla	ained by the first princip	pal component is
			(0	0 3)	
			$\Sigma = \begin{pmatrix} 6 \\ -3 \\ 0 \end{pmatrix}$	$\begin{bmatrix} 6 & 0 \\ 0 & 3 \end{bmatrix}$	
			\int 6	-3 0	
92.	If X	is a 3-dimensional randor	n vector w	ith dispersion matrix	
	(1) (3)	Exponential distribution t -distribution	(2) (4)		
91.				_	bution:
91.	Whi	ch distribution is a multiva	ariate ana	logue of Chi-Square distri	bution?

97.	The	calling population is assumed to be infinite when:
	(1)	Arrivals are independent of each other
	(2)	Capacity of the system is infinite
	(3)	Service rate is faster than the arrival rate
	(4)	All of the above
98.	Whi	ch of the following is not a key operating characteristic for a queuing system?
	(1)	Utilisation factor
	(2)	Percent idle time
	(3)	Average time spent for waiting in system and queue
	(4)	None of the above
99.		ch of the cost estimates and performance measures are not used for economic lysis of a queuing system ?
	(1)	Cost per server per unit of time
	(2)	Cost per unit of time for a customer waiting in the system
	(3)	Average number of customers in the system
	(4)	Average waiting time of customers in the system
100.		assignment problem is considered as a particular case of a transportation blem, because:
	(1)	The number of rows equals the number of columns
	(2)	All $X_{ij} = 0$ or 1
	(3)	All rim conditions are 1
	(4)	All of the above

PHDSTAT

पी-एच. डी. (सांख्यिकी) प्रवेश परीक्षा, जुलाई, 2023

समय: 3 घण्टे अधिकतम अंक: 100

सामान्य निर्देश

- 1. सभी प्रश्न अनिवार्य हैं। प्रत्येक प्रश्न 1 अंक का है।
- 2. परीक्षा कक्ष के अंदर सेलफोन, कैलकुलेटर्स, पुस्तकें, स्लाइड-रूल्स, नोटबुक्स या लिखित नोट्स, इत्यादि ले जाने की अनुमति नहीं है।
- 3. आपको परीक्षा स्थल पर केंद्र व्यवस्थापक व निरीक्षक के द्वारा दिए गये निर्देशों का अनुपालन करना होगा। ऐसा न करने पर आपको अयोग्य घोषित किया जाएगा।
- 4. कोई परीक्षार्थी नकल करते या कराते हुए पकड़ा जाता है तो उसे अयोग्य घोषित कर दिया जाएगा।
- 5. आपको निरीक्षक द्वारा प्रश्न-पुस्तिका तथा ओ. एम. आर. उत्तर पत्रक प्रदान किया जाएगा। परीक्षा समाप्त हो जाने के पश्चात्, परीक्षा कक्ष छोड़ने से पहले ओ. एम. आर. उत्तर पत्रक तथा प्रश्न-पुस्तिका को निरीक्षक को सौंप दें। किसी परीक्षार्थी द्वारा ऐसा न करने पर उसे अयोग्य घोषित कर दिया जाएगा तथा विश्वविद्यालय उसके खिलाफ आगे कार्यवाही कर सकता है।
- 6. सभी रफ कार्य प्रश्नपत्र पर ही करना है, किसी अन्य कागज पर नहीं। स्क्रैप पेपर की अनुमित नहीं है। उत्तर देते समय आप उत्तर-पुस्तिका में ही हाशिये का प्रयोग कर सकते हैं, कुछ निशान लगा सकते हैं या रेखांकित कर सकते हैं।
- 7. विश्वविद्यालय को यह अधिकार है कि किसी परीक्षार्थी द्वारा अनुचित व्यवहार या अनुचित साधनों का प्रयोग करने पर उसके परिणाम को रद्द कर दे। विश्वविद्यालय को भी चाहिए कि वह सभी परीक्षार्थियों के अंकों की जाँच एकसमान रूप से करे। यदि कहीं से ऐसा दिखाई देता है कि आपका निष्पादन उचित नहीं है, तो विश्वविद्यालय आपके परिणाम रद्द कर सकता है।

ओ. एम. आर. उत्तर-पत्रक एवं परीक्षा उत्तर-पत्रक पर सूचना कैसे भरें ?

- 1. 10 अंकों में अपना पूर्ण अनुक्रमांक लिखें। यह अनुक्रमांक ओ. एम. आर. उत्तर पत्रक पर आपके द्वारा डाले गए अनुक्रमांक से मिलना चाहिए। दिए गए स्थान में अपना सही नाम, पता भी पिन कोड सहित लिखें। ओ. एम. आर. उत्तर पत्रक पर तिथि सहित अपने हस्ताक्षर करें। यह सुनिश्चित कर लें कि आपके परीक्षा कक्ष में निरीक्षक ने भी दी गई जगह पर तिथि सहित ओ. एम. आर. उत्तर पत्रक पर हस्ताक्षर कर दिए हैं।
- 2. ओ. एम. आर. उत्तर पत्रक पर परीक्षार्थी का विवरण नीले/काले बाल पेन द्वारा भरा जाना चाहिए। अनुक्रमांक व परीक्षा केंद्र कूट लिखने व साथ ही प्रश्न के क्रमांक के सामने सही उत्तर-संख्या वाले गोले को काला करने के लिए भी नीले/काले बाल पेन का प्रयोग करें।
- 3. इस पत्रक पर कोई अवांछित निशान न लगायें।
- 4. अनुक्रमांक तथा परीक्षा केंद्र कूट स्तंभ में सही सूचना अंकों में लिखें। संगत गोले को पूर्णतः गहरा करें तथा पूर्ण रूप से भरें।
- 5. प्रत्येक प्रश्न के चार संभावित उत्तर हैं जिन्हें (1), (2), (3) व (4) द्वारा दर्शाया गया है। आपको इनमें से सर्वाधिक उचित उत्तर को चुनकर दर्शाना है। सर्वाधिक उचित उत्तर को चुनकर नीले / काले बाल पेन से प्रश्न के क्रमांक के सामने सही उत्तर वाले गोले को काला करें।
- 6. एक से अधिक उत्तर होने पर कोई अंक नहीं मिलेगा। इसलिए सर्वाधिक उचित उत्तर को ही चुनें।
- 7. एक प्रश्न पर अधिक समय मत खर्च कीजिए। यदि आपको कोई प्रश्न कठिन लग रहा हो, तो उसे छोड़कर अगले प्रश्न को हल करने का प्रयास कीजिए। बाद में समय बचने पर उस छोड़े हुए प्रश्न का उत्तर दे सकते हैं।
- 8. गलत उत्तरों हेतु कोई ऋणात्मक अंकन नहीं होगा।

1. किसी देश की 5 वर्षों की औसत वार्षिक वर्षा (mm में) नीचे दी गई है:

वर्ष	औसत वर्षा
2018	128
2019	130
2020	122
2021	124
2022	120

दी हुई आँकड़ों की इस श्रेणी को निम्न रूप में वर्गीकृत किया जाता है:

(1) वैयक्तिक श्रेणी

(2) संतत श्रेणी

(3) विविक्त श्रेणी

(4) काल श्रेणी

2. निम्नलिखित में से किसके एक संतत मात्रात्मक चर होने की अधिकतम संभावना है ?

- (1) क्रिकेट विश्व कप में एक बल्लेबाज द्वारा बनाए गए कुल रन
- (2) भारत की जनसंख्या
- (3) इलेक्ट्रोनिक्स स्टोर द्वारा बेचे गए टेलीविजनों की संख्या
- (4) प्रवेश परीक्षा समाप्त करने में लिया गया समय

3. SRSWOR का उपयोग करते हुए, 100 इकाइयों में से 10 इकाइयाँ निकालने की प्रायिकता है :

 $(1) \quad \frac{1}{10!}$

(2) $\frac{1}{100}$

(3) $\frac{1}{^{100}C_{10}}$

 $(4) \frac{10}{100}$

4. किसी प्रतिदर्शज के प्रतिचयन बंटन का माध्य कहलाता है:

(1) प्रतिचयन त्रुटि

(2) प्रकार-I त्रुटि

(3) अप्रतिचयन त्रुटि

(4) इनमें से कोई नहीं

PHDS	TAT		(24)		(P-30)
	(4)	प्रतिक्रिया देने वाले भाग लेने से मना	कर	सकते हैं।	
	(3)	मानव अभिनति			
	(2)	परिणाम कभी प्रतिनिधिक नहीं होते।			
	(1)	विधियों में व्यय अधिक होता है।			
9.	निम्नी	लिखित में से कौन अप्रायिकता प्रतिच	यन तव	हनोकों की एक समस्या है ?	
	(3)	प्रसंस्करण त्रुटि	(4)	माध्य वर्ग त्रुटि	
	(1)	मापन त्रुटि	(2)	अप्रतिक्रिया त्रुटि	
8.	निम्न	लिखित में से कौन अप्रतिचयन त्रुटियों	का ए	एक प्रकार नहीं है ?	
	(4)	यह सदैव ऋणात्मक होता है।			
	(3)	यह सदैव धनात्मक होता है।			
	(2)	यह प्रतिदर्श आँकड़ों तथा समष्टि प्रा	चल व	े बीच का अंतर है।	
	(1)	प्रतिचयन त्रुटि समष्टि माध्य के बराब	त्रर होत	ी है।	
7.	निम्ना	लिखित में से कौन प्रतिचयन त्रुटि के	लिए	सत्य है ?	
	(3)	स्तरीकृत प्रतिचयन	(4)	क्रमबद्ध प्रतिचयन	
	(1)	सुविधा या आकस्मिक प्रतिचयन	(2)	उद्देश्यीय प्रतिचयन	
	कहल	गाती है :			
6.	यदि	कोई प्रतिदर्श भूल और प्रयास विधि र	ते (ल	परवाही से) चुना जाता है, तो यह प्रतिचयन	न विधि
	(3)	उद्देश्यीय प्रतिचयन	(4)	गुच्छ प्रतिचयन	
	(1)	यादृच्छिक प्रतिचयन	(2)	क्रमबद्ध प्रतिचयन	
Э.	।वश्व	। कप क । लए, । क्रकट टाम चुनन क	ાલણ	उपयाग का गइ।वाच ह :	

10.		लीजिए कि समष्टि माध्य $ar{Y}$ का अ $ar{y}_1$ है तथा $ ext{SRSWR}$ के अन्तर्गत		न करने के लिए, SRSWOR के अन्तर्गत प्रतिदर्श
	(1)	$\operatorname{Var}(\overline{y}_1) = \operatorname{Var}(\overline{y}_2)$	(2)	$Var(\overline{y}_1) = 1/Var(\overline{y}_2)$
	(3)	$Var(\overline{y}_1) \leq Var(\overline{y}_2)$	(4)	$Var(\bar{y}_1) \ge Var(\bar{y}_2)$
11.		काइयों वाला एक ऐसा प्रतिदर्श चुः गयन प्रविधि है :	नने के	लिए, जिसमें एक दुर्लभ गुण हो, एक उचित
	(1)	SRSWOR	(2)	स्तरीकृत प्रतिचयन
	(3)	प्रतिलोम प्रतिचयन	(4)	ये सभी
12.	निम्न	लिखित में से कौन लैटिन वर्ग डिजाइ	न का	न्यूनतम संभव रूप है ?
	(1)	(1×1)	(2)	(2×2)
	(3)	(3×3)	(4)	(4×4)
13.	अनुब्र	न्मीय रूप से अंकित दिल्ली मेट्रो के	स्तंभों	में से, यादृच्छिक रूप से किसी स्थान (बिन्दु) से
	प्रारंभ	करते हुए तथा फिर प्रत्येक 10वाँ	स्तंभ व	लेते हुए, कोई व्यक्ति एक प्रतिदर्श चुनता है। उस
	व्यकि	त ने एकप्रितदर्श चुना है।		
	(1)	सरल यादृच्छिक	(2)	अनुक्रमीय
	(3)	स्तरीकृत	(4)	क्रमबद्ध
14.	'भार	त सरकार के मौसम विज्ञान विभाग' व	क्रे पोर्ट	ल से लिए गए आँकड़े कहे जाएँगे :
	(1)	प्राथमिक आँकड़े	(2)	गौण आँकड़े
	(3)	उपर्युक्त (1) और (2) दोनों	(4)	न तो प्राथमिक और न ही गौण आँकड़े
15.	वह :	प्रतिचयन प्रक्रिया, जिसमें सर्वप्रथम वि	कसी स	श्यान की समष्टि को सजातीय समूहों में विभाजित
	किया	। जाता है तथा फिर प्रत्येक समूह से	एक य	गादृच्छिक प्रतिदर्श निकाला जाता है, कहलाती है:
	(1)	प्रायिकता प्रतिचयन	(2)	सरल यादृच्छिक प्रतिचयन
	(3)	स्तरीकृत प्रतिचयन	(4)	गुच्छ प्रतिचयन
PHD	STAT		(25)	(P-30)

16.	. मान लीजिए कि 10 उत्पादों में से 2 उत्पाद, बिना प्रतिस्थापित किए हुए, चुने जाते हैं। तब, सभी संभव यादृच्छिक प्रतिदर्शों की संख्या होगी :					
	(1) (3)	45 201	(2) (4)	40 5		
17.		लिखित में से कौन-सा चर एक विः गा है ?	शेष पां	रिसर के अन्दर सभी संभव मान ग्रहण नहं	ों कर	
	(1)	विविक्त चर	(2)	संतत चर		
	(3)	बीच में आने वाला चर	(4)	अतिरिक्त चर		
18.		लिखित में से कौन-से आलेखीय निर गो नीचे की ओर या ऊपर की ओर स		में, संचयी बारंबारताओं का आलेखन सम्बद्ध हो सकती है ?	होता	
	(1)	बारंबारता बहुभुज	(2)	रेखा आलेख		
	(3)	आयतचित्र	(4)	तोरण		
19.		य़की में पीएच.डी (Ph.D.) की प्रवे में, निम्न में से कौन-सा मापन स्केल		क्षि को पूरा करने में लिए गए समय का अधिक उपयुक्त है ?	वर्णन	
	(1)	नामित (अंकित)	(2)	क्रमसूचक		
	(3)	अंतराल	(4)	अनुपात		
20.	यदि	कोई यादृच्छिक चर X ~ Bin(48, 3/4	4) है,	तो इस यादृच्छिक चर X का मानक विचलन	न है :	
	(1)	$\sqrt{3}$	(2)	$\frac{3}{4}\log 48$		
	(3)	3	(4)	$48\log\frac{3}{4}$		
21.	यदि है :	कोई यादृच्छिक चर X ~ N(40, 4)	है तथा	X का प्रत्याशित मान 40 है, तो X का म	गध्यक	
	(1)	36	(2)	44		
	(3)	38	(4)	40		
PHDS	STAT		(26)	(1	P-30)	

		$rac{9}{2}e^{-2}$		$\frac{9}{2}e^{-3}$	
	(3)	$\frac{2}{9}e^{-2}$	(4)	$\frac{2}{9} e^{-3}$	
23.	यदि	कोई यादृच्छिक चर X ~ N(40, 9) है	, तो I	P(X=2) बराबर होगा :	
	(1)	$\frac{9}{40}$	(2)	0	
	(3)	$\frac{40}{81}$	(4)	$\frac{81}{1600}$	
24.	यदि	किसी समुच्चय के प्रत्येक प्रेक्षण को	2 से '	भाग दिया जाए, तो नए मानों का माध्य :	
	(1)	प्रारंभिक माध्य का दुगुना है।	(2)	2 कम हो जाएगा	
	(3)	प्रारंभिक माध्य का आधा है।	(4)	वही रहता है।	
25.	गुणोत्त	तर माध्य अन्य माध्यों से बेहतर होता	है, जब	। आँकड़े होते हैं :	
	(1)	धनात्मक भी और ऋणात्मक भी	(2)	अन्पातों या प्रतिशतों में	
	(3)	द्विआधारी	(4)	अन्तराल स्केल पर	
26.	A.M	., G.M. और H.M. में सही सम्बन्ध	है:		
	(1) (3)	$A.M. = G.M. = H.M.$ $H.M. \ge G.M. \ge A.M.$		$G.M. \ge A.M. \ge H.M.$ $A.M. \ge G.M. \ge H.M.$	
27.	समान	। माध्य, माध्यक और बहुलक वाली व	रो श्रेणि	गयों में हो सकते हैं :	
	(1)	समान मान	(2)	समान मान नहीं	
	(3)	(1) और (2) दोनों	(4)	न तो (1) और न ही (2)	
28.	भारित	ा माध्य की स्थिति में, माध्य की परिः	शुद्धता	या उपयोगिता :	
	(1)	में कमी आ जाती है।	(2)	में वृद्धि हो जाती है।	
	(3)	अप्रभावित रहती है।	(4)	इनमें से कोई नहीं	
PHDS	STAT		(27)		(P-30)

22. यदि कोई यादृच्छिक चर $X \sim Pois(3)$ है, तो P(X = 2) बराबर होगा :

29.	निम्न	लिखित में से परिक्षेपण का कौन-सा	मापक	श्रेष्ठतम माना जाता है ?
	(1)	मानक विचलन	(2)	परिसर
	(3)	प्रसरण	(4)	प्रसरण का गुणांक
30.	एक	सममित बंटन के लिए, Md + Q.I	D. (जब Md = माध्यक, Q.D. = चतुर्थक विचलन)
	सम्म	ालित करता है :		
	(1)	प्रेक्षणों का 25 प्रतिशत	(2)	प्रेक्षणों का 50 प्रतिशत
	(3)	प्रेक्षणों का 75 प्रतिशत	(4)	प्रेक्षणों का 100 प्रतिशत
31.	यदि	एक यादृच्छिक चर X का माध्य 3	और	मानक विचलन 5 है, तो चर $Y=2X-5$ का
	प्रसर	ण है :		
	(1)	45	(2)	100
	(3)	15	(4)	40
32.	यदि	किसी बंटन की ककुदता का गुणांक	γ ₂ ₹	गून्य है, तो बारंबारता वक्र है :
	(1)	तंगककुदी	(2)	सपाटक कुदी
	(3)	मध्यक्कुदी	(4)	ये सभी
33.	निम्न	लिखित में से किस बंटन में स्मृतिहीन	गुण	होता है ?
	(1)	द्विपद	(2)	प्रसामान्य
	(3)	गामा	(4)	चरघातांकीय
34.	समा	श्रयण विश्लेषण का उपयोग निम्न के	लिए	किया जा सकता है :
	(1)	विश्वास्यता अंतराल की लंबाई कम	करने	में
	(2)	आश्रित चर की प्राग्क्ति में		
	(3)	कुछ उपचारों के वास्तविक प्रभाव व	नो जान	नने में
	(4)	ये सभी		

(28)

(P-30)

PHDSTAT

35. संभावित त्रुटि (P.E.) के लिए सूत्र है	35.	संभावित	त्रुटि	(P.E.)	के	लिए	सूत्र	है	:
---	-----	---------	--------	--------	----	-----	-------	----	---

(1) P.E. =
$$0.6745\sqrt{\frac{1-r^2}{n}}$$
 (2) P.E. = $0.6745\sqrt{\frac{1-r^2}{n-2}}$

(2) P.E. =
$$0.6745\sqrt{\frac{1-r^2}{n-2}}$$

(3) P.E. =
$$0.6745 \frac{1-r^2}{n}$$
 (4) P.E. = $0.6745 \frac{1-r^2}{\sqrt{n}}$

(4) P.E. =
$$0.6745 \frac{1-r^2}{\sqrt{n}}$$

परिकल्पना $H_0: \rho = \rho_0$ (एक अचर) की जाँच निम्न रूपांतरण के उपयोग द्वारा की जा सकती है:

$$(1) \quad Z_{\rho} \, = \, log_{10} \Bigg(\frac{1+\rho}{1-\rho} \Bigg)$$

$$(2) \quad \mathbf{Z}_{\rho} = \log_{10} \left(\frac{1 - \rho}{1 + \rho} \right)$$

(3)
$$Z_{\rho} = \frac{1}{2} \log_e \left(\frac{1+\rho}{1-\rho} \right)$$

$$(4) \quad \mathbf{Z}_{\rho} = \log_{e} \left(\frac{1 - \rho}{1 + \rho} \right)$$

यदि निर्धारण के गुणांक (\mathbf{R}^2) का मान 1 के निकटतम है, तो इससे निष्कर्ष निकलता है कि :

- - वहाँ रैखिक सम्बन्ध की कमी है। (2) रैखिक सम्बन्ध लगभग पूर्ण है।
- वहाँ एक वक्रीय सम्बन्ध है।
- (4) ये सभी

किसी बहुचरीय अध्ययन में, दो चरों के बीच का सहसम्बन्ध, जो अन्य सभी चरों के प्रभाव को विलोपित करता है, कहलाता है:

(1) सरल सहसम्बन्ध

- (2) बहुल सहसम्बन्ध
- आंशिक सहसम्बन्ध
- (4) आंशिक समाश्रयण

प्रकार II त्रुटि की प्रायिकता कहलाती है : 39.

> (1) α

(2)β

(3) $1 - \alpha$

(4) $1 - \beta$

सम्पूर्ण बड़ा (विस्तृत) प्रतिदर्श सिद्धान्त निम्न परिकल्पना पर आधारित है :

- ऑंकडों का प्रतिचयन बंटन लगभग प्रसामान्य होता है।
- ऑंकड़ों का प्रतिचयन बंटन प्रसामान्य से बहुत भिन्न होता है।
- ऑंकड़ों का प्रतिचयन बंटन लगभग लघु-प्रसामान्य होता है।
- उपर्युक्त में से कोई नहीं

PHDS	STAT		(30)		(P-30)
	(3)	प्रेक्षणात्मक अनुसंधान	(4)	अनुप्रयुक्त अनुसंधान	
	(1)	मात्रात्मक अनुसंधान	(2)	मौलिक अनुसंधान	
46.	निम्न	लिखित में से कौन एक अनुसंधान क	ा प्रका	र नहीं है ?	
	(4)	उपर्युक्त में से कोई नहीं			
	(3)	आँकड़ों को विश्लेषण करने की वि	धि की	खोज करना	
	(2)	उद्देश्य सहित अनुसंधान प्रश्न बनाना			
	(1)	अनुसंधान परिकल्पनाएँ सूत्रित करना			
45.	अनुस	मंधान करने के लिए, निम्नलिखित में	से कि	सकी प्रथम आवश्यकता है ?	
	(3)	खोज की यात्रा	(4)	ये सभी	
				विद्यालय ज्ञान में एक प्रारंभिक योगदान	
44.	•	मंधान है :			
		$H_1: \mu \neq \mu_0$	(4)	$\mathbf{H}_1: \boldsymbol{\mu} = \boldsymbol{\mu}_0$	
		$H_1: \mu > \mu_0$	(2)	1 , , ,	
43.			तब वैव	किल्पक परिकल्पना नहीं हो सकती है :	
	(3)	हरविज	(4)	डब्ल्यू. एस. गोस्सेट	
		लाप्लेस	(2)	शेवार्ट	
42.	<i>t</i> - बं	टन निम्न द्वारा दिया गया है :			
	(4)	उपर्युक्त में से कोई नहीं			
	(3)	समष्टि माध्यों के बीच सार्थक अंतर	है।		
	(2)	समष्टि माध्यों के बीच कोई सार्थक	अंतर	नहीं है।	
	(1)	समष्टि माध्यकों के बीच कोई सार्थ	क्र अंत	र नहीं है।	
41.	H_0	$= \mu_1 = \mu_2$ का तात्पर्य है :			

47.	किस प्र	प्रकार के अनसंधान में. अनसंधान अ	पनेक र	प्रमय अवधियों पर किया जाता है ?	
		संकल्पनात्मक अनुसंधान	(2)		
		वर्णनात्मक अनुसंधान		अनुदैर्ध्य देशांतरीय अनुसंधान	
			(1)		
48.	साहित्य	। की समीक्षा का तात्पर्य है :			
	(1) f	विश्लेषण के उद्देश्य के लिए सैद्धांति	क फ्रे	मवर्क का सूत्रण	
	(2) T	परिकल्पना की जाँच			
	(3)	आँकड़ों का निर्वचन			
	(4) f	विशिष्ट विषय पर पिछले प्रकाशित	कार्यों	का सिंहावलोकन	
49.	किस प्र	प्रकार के अनुसंधान का व्यापकीकरण	ग नहीं	किया जा सकता है ?	
	(1)	प्रायोगिक अनुसंधान			
	(2)	ऐतिहासिक अनुसंधान			
	(3)	वर्णनात्मक अनुसंधान			
	(4)	वैश्लेषिक अनुसंधान			
50.	शुद्ध ग	णित से सम्बन्धित अनुसंधान किस	प्रकार	के अनुसंधान के अन्तर्गत आता है ?	
	(1)	अनुप्रयुक्त अनुसंधान			
	(2)	ऐतिहासिक अनुसंधान			
	(3)	वर्णनात्मक अनुसंधान			
	(4)	मौलिक अनुसंधान			
51.	$A = {$	$\{a,b,c\}$ एक प्रतिदर्श समष्टि है, उ	जहाँ पा	रिणाम 'a' के प्राप्त होने की संभावना	परिणाम 'b'
	के प्राप	त होने की संभावना से दुगुनी है त	ाथा प	रिणाम 'b' के प्राप्त होने की संभावना	परिणाम 'c'
	की संध	भावना की आधी है। तब, $\mathrm{P}(b)$ होग	ती :		
	(1)	$\frac{1}{5}$	(2)	$\frac{2}{5}$	
	(3)	$\frac{3}{5}$	(4)	$\frac{4}{5}$	
-		ð	,	· ·	/-
PHD	STAT		(31)		(P-30)

52.	यदि	$P(A) = \frac{1}{2}, P(B^c) = \frac{11}{16}$ और $P($	${ m A} \cup { m I}$	$\mathbf{B}) = \frac{3}{4} \ \ \dot{\mathbf{E}}, \ \ \dot{\mathbf{E}} \ \ \mathbf{P}(\mathbf{A} \cap \mathbf{B}) \ \ \dot{\mathbf{E}} \ \ \mathbf{E}$
	(1)	$\frac{15}{16}$	(2)	$\frac{1}{8}$
	(3)	$\frac{1}{16}$	(4)	$\frac{11}{16}$
53.	मापन	5 imes5 imes5 के एक लकड़ी के घ	ग्न को	लाल रंग से पेंट किया जाता है तथा फिर उसे
	1×1	1 imes 1 मापन के 125 घनों में काट	दिया ः	जाता है। इनमें से एक घन को यादृच्छिक रूप से
	लिया	जाता है। इसकी क्या प्रायिकता है वि	क्रं इस	घन पर पेंट नहीं हुआ है ?
	(1)	$\frac{27}{125}$	(2)	$\frac{8}{125}$
	(3)	$\frac{36}{125}$	(4)	$\frac{54}{125}$
54.	व्यकि	तयों का एक $m imes n$ आयत बनाया	जाता ह	है, जिसमें प्रति पंक्ति m व्यक्ति हैं और प्रति स्तंभ
	$n \overline{\sim}$	यक्ति हैं। इसकी प्रायिकता ज्ञात की	जिए 1	कि एक व्यक्ति स्वयं को इस आयत के बाहरी
	परिम	ाप पर पाता है।		
	(1)	$\frac{4}{mn}$	(2)	$\left(\frac{1}{m} + \frac{1}{n}\right)$
	(3)	$\frac{2(m+n)}{mn}$	(4)	$\frac{2m+2n-4}{mn}$
55.	किर्स	ो लक्ष्य पर पवन 0.8 प्रायिकता के	साथ र्	नशाना लगाता है तथा उसी लक्ष्य पर सोहन 0.75
	प्रायि	कता के साथ निशाना लगाता है। इस	की क्य	या प्रायिकता है कि उस पर दोनों का निशाना नहीं
	लगेग	τ?		
	(1)	0.2	(2)	0.05
	(3)	0.15	(4)	0.6
PHD	STAT		(32)	(P-30)

	की प्रायिकता क्या है ?		
	$(1) \binom{20}{12} \left(\frac{1}{3}\right)^{12}$	(2) $\binom{20}{12} \left(\frac{1}{3}\right)^{12} \left(\frac{2}{3}\right)^{8}$	
	(3) $\binom{20}{12} \left(\frac{1}{3}\right)^{12} \binom{20}{8} \left(\frac{2}{3}\right)^{8}$	$(4) \frac{3}{5}$	
58.	आप एक खेल इस प्रकार खेलते हैं : ः	आप एक नीले और एक लाल पासे को फेंकते हैं।	यदि
	बिन्दुओं का योग {2,3,4} में है, तो अ	गप ₹ 1 प्राप्त करते हैं। यदि यह {5, 6, 7} में है	, तो
	आप ₹ 1 हार जाते हैं। यदि यह {8,9,1	0} में है, तो आप ₹ 2 जीत जाते हैं। यदि यह {11,	12}
	में है, तो आप ₹ 2 हार जाते हैं। प्रत्येक	खेल के बाद, आपका औसत लाभ क्या है ?	
	(1) ₹ 0	(2) ₹ 1.50	
	(3) ₹ 0.25	(4) ₹ 0.33	
प्रश्न	59 और 60 इस स्थिति पर आधारित	हैं: एक अनिभनत (निष्पक्ष) सिक्के को, जिसमें	चित
की प्रा	यिकता 3/4 है और पट की प्रायिकता 1/	4 है, तीन बार उछाला जाता है।	
59.	कोई भी चित प्राप्त नहीं होने की प्रायिकत	ता क्या है ?	
	$(1) \frac{1}{64}$	$(2) \frac{27}{64}$	
	$(3) \frac{37}{64}$	$(4) \frac{63}{64}$	
PHDS		(33) (P-	30)

56. दो न्यायसंगत पासों को, जिनमें से एक साधारण पासा है तथा अन्य के फलकों पर 1, 3, 5, 7,

9, 10 अंकित है, यादृच्छिक रूप से फेंका जाता है। योग 12 प्राप्त होने की प्रायिकता है:

 $(1) \frac{1}{6}$

(3) $\frac{1}{18}$

 $(2) \quad \frac{1}{12}$

 $(4) \frac{1}{36}$

57. एक बहु-विकल्पीय परीक्षा में 20 प्रश्न हैं। प्रत्येक प्रश्न में 3 विकल्प हैं, जिनमें से एक ही सही

उत्तर है। एक व्यक्ति इस परीक्षा में यादृच्छिक रूप से उत्तर देता है। ठीक 12 प्रश्न सही हल करने

60	ठीक	एक	चित	प्राप्त	होने	की	प्रायिकता	क्या	हे	?
oo.	0177	771	1 71/1	ZII ^(I	ला	71/1	711 7 7 M	71 711	Q	٠

 $(1) \quad \frac{1}{64}$

(2) $\frac{9}{64}$

 $(3) \quad \frac{37}{64}$

 $(4) \quad \frac{27}{64}$

प्रश्न 61 और 62 इस सूचना पर आधारित हैं : एक निरपेक्षत: संतत यादृच्छिक चर X का निम्न प्रायिकता घनत्व फलन (pdf) है :

$$f(x) = \begin{cases} \frac{k}{x^2}, & \text{यदि } 1 \le x \le 3\\ 0, & \text{अन्यथा} \end{cases}$$

जहाँ k एक अचर है।

61. दिए हुए pdf के लिए, k का मान है :

 $(1) \quad \frac{1}{2}$

(2) 2

 $(3) \quad \frac{3}{2}$

 $(4) \quad \frac{2}{3}$

62. दिए हुए pdf के लिए, $P(X\geq 2)$ का मान है :

 $(1) \quad \frac{2}{3}$

 $(2) \quad \frac{1}{2}$

(3) $\frac{1}{3}$

 $(4) \quad \frac{1}{4}$

63. स्टोकेस्टिक प्रक्रियाएँ होती हं:

- (1) प्रकृति में यादृच्छिक
- (2) समय का फलन
- (3) प्रकृति में यादृच्छिक और समय का फलन
- (4) उपर्युक्त में से कोई नहीं

64.	निम्न	लिखित में से कौन-सा मॉडल असंभा	व्य मॉ	इल है ?	
	(1)	निश्चयात्मक मॉडल	(2)	स्टोकेस्टिक मॉडल	
	(3)	(1) और (2) दोनों	(4)	इनमें से कोई नहीं	
65.	${X(t)}$	$\{t\}, t \in \mathbf{T}\}$ एक स्टोकेस्टिक	प्रक्रि	या है। यदि $\mathrm{X}_{t_1},\mathrm{X}_{t_2},,\mathrm{X}_{t_n}$	और
	X_{t_1}	$\mathbf{x}_{t_1+h}, \mathbf{X}_{t_2+h} + \ldots + \mathbf{X}_{t_n+h}$ का सभी	h > 0) के लिए, संयुक्त बंटन समान है, तो $\mathbf{X}(t)$	है :
	(1)	कमजोर स्थिर प्रक्रिया	(2)	मजबूत स्थिर प्रक्रिया	
	(3)	स्वतंत्र वृद्धियों के साथ प्रक्रिया	(4)	मार्कोव प्रक्रिया	
66.	यदि	$(0,t]t\in(0,\infty)$ में स्विचबोर्ड पर	प्राप्त व	होने वाले टेलीफोन कॉलों की संख्या $\mathrm{X}(t)$ है	्रे, तो
	$\mathbf{X}(t)$	है:			
	(1)	विविक्त यादृच्छिक चर			
	(2)	विविक्त स्टोकेस्टिक प्रक्रिया, जो स	मय में	विविक्त है	
	(3)	विविक्त स्टोकेस्टिक प्रक्रिया, जो स	मय में	संतत है	
	(4)	संतत स्टोकेस्टिक प्रक्रिया, जो समय	में वि	विक्त है।	
67.	वह	असमिका, जो एक आकलक के न्यून	नतम प्र	सरण परिबद्ध को प्राप्त करने के लिए उपयोग	ा की
	जाती	है, निम्न है :			
	(1)	चेवीचेव-असमिका	(2)	जेन्सन-असमिका	
	(3)	क्रैमर-रॉव असमिका	(4)	इनमें से कोई नहीं	
68.	क्रैमर	-रॉव असमिका में, हर कहलाता है :			
	(1)	प्रसरण का निम्न परिबद्ध	(2)	प्रसरण का उपरि परिबद्ध	
	(3)	फिशर-सूचना	(4)	ये सभी	
69.	प्रतिच	त्रयन बंटन का मानक विचलन कहला	ता है	:	
	(1)	प्रतिदर्श त्रुटि	(2)	प्रतिचयन त्रुटि	
	(3)	मानक त्रुटि	(4)	सरल (साधारण) त्रुटि	
PHDS	STAT		(35)	(P·	-30)

70.	समिष्ट माध्य के लिए एक विश्वास्यत	अंतराल 56 से 64 तक 95% विश्वास्यता स्तर पर
	परिकलित किया गया। यदि विश्वास्यता स	तर को 99% बढ़ा दिया जाए, तो विश्वास्यता अंतराल :
	(1) संकीर्ण हो जाएगा	(2) वही रहेगा
	(3) चौड़ा हो जाएगा	(4) माप में दुगुना हो जाएगा
71.	$\mathrm{pdf}\ f(x,\theta)=\theta e^{-\theta x}, x>0$ वाली ए	क समिष्टि में से माप एक का एक यादृच्छिक प्रतिदर्श
	निकाला जाता है तथा इसका उपयोग H_0	$ heta: heta = 1$ बनाम $ heta_1: heta = 2$ की जाँच में किया जाता
	है। यदि $x \ge 2$ क्रांतिक क्षेत्र है, तो $(α,$	β) का मान है :
	$(1) (e^{-2}, e^{-1})$	$(2) (e^{-1}, e^{-2})$
	$(3) (e^{-2}, 1 - e^{-4})$	$(4) (e^{-2}, e^{-4})$
72.	यदि ${ m X}_1, { m X}_2,, { m X}_n$ किसी अपरिमित	समष्टि से लिया गया एक यादृच्छिक प्रतिदर्श है, जहाँ
	${f S}^2 = rac{1}{n} \sum_i ({f X}_1 - {ar X})^2 $ है, तो समध्य प्र	प्रसरण σ^2 के लिए अनिभनत आकलक है :
	$(1) \frac{1}{n-1} S^2$	$(2) \frac{n-1}{n} S^2$
	$(3) \frac{1}{n} S^2$	$(4) \frac{n}{n-1} S^2$
73.	$ au(heta)$ के एक आकलक T_n की सरल स	ांगतता का अर्थ है :
	(1) $\lim_{n\to\infty} P_{\theta} \{ T_n - \tau(\theta) < \epsilon \} = 1$	(2) $\lim_{n\to\infty} P_{\theta} \left\{ \mid T_n - \tau(\theta) \mid < \epsilon \right\} = 0$
	(3) $P_{\theta} \{ \mid T_n - \tau(\theta) \mid > \epsilon \} = 1$	(4) ये सभी
74.	$ au(heta)$ के आकलकों $T_1,T_2,,T_n$ प्रसामान्य आकलक कहलाता है, यदि वह	का एक अनुक्रम श्रेष्ठतम अनंत स्पर्शीय (स्पर्शोन्मुख) निम्न को सन्तुष्ट करता है :
	(1) $\sqrt{n} \left[\mathbf{T}_n - \mathbf{\tau}(\boldsymbol{\theta}) \right] \sim \mathbf{N}(0, \sigma^2)$	
	(2) किसी अन्य आकलक \mathbf{T}_n के प्रसर्	ण की तुलना में, \mathbf{T}_n का न्यूनतम प्रसरण है।
	(3) T_n संगत है।	
	(4) उपर्युक्त सभी	

(36)

(P-30)

PHDSTAT

DUD	STAT	गुञ्छ प्राराययग	(37)	
		स्तरीकृत प्रतिचयन गुच्छ प्रतिचयन		दो-चरण गुच्छ प्रतिचयन क्रमबद्ध प्रतिचयन
80.		रण प्रतिचयन स्कीम चुनते समय, य है :	प्रदि <i>n</i>	= N है, तो यह दो-चरण प्रतिचयन स्कीम रह
		$\mathrm{S}^2 < \mathrm{S}_w^2$ $\mathrm{NS}^2 < \mathrm{S}_w^2$		$S^2 > S_w^2$ $NS^2 = S_w^2$
79.		क्रमबद्ध प्रतिदर्श का माध्य सरल या और केवल यदि :	दृच्छि	क प्रतिदर्श के माध्य से अधिक परिशुद्ध होता है,
		$= \frac{1}{2} \frac{\text{CV}(y)}{\text{CV}(x)}$ $< \frac{1}{2} \frac{\text{CV}(x)}{\text{CV}(y)}$		$= \frac{1}{2} \frac{\text{CV}(x)}{\text{CV}(y)}$ $> \frac{1}{2} \frac{\text{CV}(x)}{\text{CV}(y)}$
78.		यादृच्छिक प्रतिचयन वाले एक ब $ar{s}$ $Xar{Y}$ से छोटा होता है, यदि X और	•	दर्श में, अनुपात आकलक का प्रसरण आकलक बीच सहसम्बन्ध है :
		धनात्मक $0 \leq ho_w \leq 1$	(2)(4)	ऋणात्मक (2) और (3) दोनों
77.		प्रतिचयन में, सामान्यतः ' ρ_w ' को प्र		
			. ,	PPSWR स्कीम समानुपात और प्रतिशतता के लिए प्रतिचयन
76.	प्रतिद	र्श चुनने की लाहिडो विधि का अनुप्र	योग ि	नम्न में होता है :
		अनभिनत आकलक प्रभावी प्रतिदर्शज		सम्पूर्ण प्रतिदर्शज पर्याप्त प्रतिदर्शज
75.	प्राप्त	किया जाता है :		सरण अनिभनत आकलक को निम्न के माध्यम से

81.	एक समष्टि को दो स्तरों में विभाजित	किया गया है, ताकि $N_1=300, N_2=200, S_1=2$
	और $\mathbf{S}_2 = 3$ है। यदि नेमन आबंटन द्वा	रा माप 24 का एक प्रतिदर्श आबंटित किया जाना है, तो
	प्रत्येक स्तर से प्रतिदर्श माप हैं:	
	(1) (10, 14)	(2) (14, 10)
	(3) (13, 11)	(4) (12, 12)
	2	

82. एक 2³-क्रमगुणित प्रयोग में, उपचार प्रभाव

$$\frac{1}{4} \left[(abc) - (bc) + (ab) - (b) - (ac) + (c) - (a) + (1) \right]$$

निम्न उपचार के कारण है:

(1) A

(2) B

(3) C

(4) AB

83. 4 ब्लॉकों और 4 उपचारों वाली एक RBD में, जिसमें एक लुप्त मान है, स्वतंत्रता की त्रुटि डिग्री है:

(1) 8

(2) 10

(3) 11

(4) 12

84. किसी 2^3 भांत (भ्रमित) क्रमगुणित प्रयोग में, α की दो ब्लॉकों के साथ नीचे दर्शाए अनुसार पुनरावर्ती होती है :

ब्लॉक I	ब्लॉक II
abc	ac
bc	ab
a	b
(1)	c

इसमें भ्रमित परस्पर-क्रिया है:

(1) ABC

(2) AB

(3) BC

(4) AC

	है ?		
	(1) $vr = bk$	$(2) \lambda(v-1) = r(k-t)$	
	(3) b < v	(4) b = k - t	
86.	$m{r}$ ब्लॉकों वाले एक 2^3 -क्रमगुणित प्रयोग	में, त्रुटि के लिए स्वतंत्रता की डिग्री है:	
	(1) $r-1$	(2) $7r + 1$	
	(3) $7r-1$	(4) 7(r-1)	
87.	एक $7 imes 7$ लैटिन वर्ग डिजाइन में F-अन्	नुपात के लिए, स्वतंत्रता की डिग्री है :	
	(1) $(7, 42)$	(2) $(7,30)$	
	(3) (6, 30)	(4) $(6, 42)$	
88.	यदि $X_{p \times 1} \sim N_p$ (μ , Σ) है, तो निम्न प	गर विचार कोजिए :	
	(i) $Z_{p\times 1} = DX_{p\times 1} \sim N_p(D\mu, D\Sigma)$	$\mathbf{D}^{\mathrm{T}}),$ जहाँ रैंक $(\mathbf{D}_{p imes p})=p$ है	
	(ii) $\mathbf{Z}_{p \times 1} = \mathbf{D} \mathbf{X}_{p \times 1} \sim \mathbf{N}_{p} (\mathbf{D} \mathbf{\mu}, \mathbf{D}^{T} \mathbf{\Sigma})$	(\mathbf{D}) , जहाँ रैंक $(\mathbf{D}_{p imes p}) = p$ है	
	(iii) $\mathbf{Z}_{q\times 1} = \mathbf{D}\mathbf{X}_{p\times 1} \sim \mathbf{N}_q(\mathbf{D}\mathbf{\mu}, \mathbf{D}\mathbf{\Sigma})$	$(\mathbf{D}^{\mathrm{T}})$, जहाँ रैंक $(\mathbf{D}_{q imes p})$ $=$ q \leq p है	
	(iv) $\mathbf{Z}_{q \times 1} = \mathbf{D} \mathbf{X}_{p \times 1} \sim \mathbf{N}_q (\mathbf{D} \mathbf{\mu}, \mathbf{D}^T \mathbf{\Sigma})$	$(\mathbf{D}),$ जहाँ रैंक $(\mathbf{D}_{q imes p})=q\leq p$ है	
	यदि D अचर अवयवों का कोई आव्यूह है	है, तो उपरोक्त में कौन सही है/हैं ?	
	(1) केवल (ii)	(2) (ii) और (iii) दोनों	
	(3) (i) और (iii) दोनों	(4) (ii) और (iv) दोनों	
89.	यदि $\bar{\mathbf{X}} \sim \mathbf{N}_p(\bar{\mu}, \Sigma)$ है, तो $(\bar{\mathbf{X}} - \mu)^T \Sigma$	$x^{-1}(\check{X}-\check{\mu})$ निम्न का अनुपालन करता है :	
	(1) विशार्ट बंटन	(2) χ^2 बंटन	
	(3) होटलिंग T^2 बंटन	(4) इनमें से कोई नहीं	
PHD	STAT	(39)	(P-30)

85. एक संतुलित अपूर्ण ब्लॉक डिजाइन (BIBD) के लिए, निम्नलिखित में से कौन-सा कथन सत्य

90. यदि
$$\Sigma_1$$
 और Σ_2 दो सहप्रसरण आव्यूह हैं, जिन्हें $\Sigma_1 = \begin{pmatrix} 14 & 8 & 3 \\ 8 & 5 & 2 \\ 3 & 2 & 1 \end{pmatrix}$ और $\Sigma_2 = \begin{pmatrix} 6 & 6 & 1 \\ 6 & 8 & 2 \\ 1 & 2 & 1 \end{pmatrix}$

द्वारा दिया जाता है, तो निम्नलिखित में से कौन सही है ?

- $(1) \mid \Sigma_1 \mid > \mid \Sigma_2 \mid$ और $\operatorname{trace}(\Sigma_2) < \operatorname{trace}(\Sigma_1)$
- $(2) \mid \Sigma_1 \mid > \mid \Sigma_2 \mid$ और $\operatorname{trace}(\Sigma_1) < \operatorname{trace}(\Sigma_2)$
- $(3) \mid \Sigma_2 \mid > \mid \Sigma_1 \mid$ और $\operatorname{trace}(\Sigma_1) < \operatorname{trace}(\Sigma_2)$
- (4) $|\Sigma_2| > |\Sigma_1|$ और $\operatorname{trace}(\Sigma_2) < \operatorname{trace}(\Sigma_1)$
- 91. कौन-सा बंटन काई-स्क्वायर (वर्ग) बंटन का बहुविचरीय अनुरूप है ?
 - (1) चरघातांकी बंटन

(2) विशार्ट बंटन

(3) *t* -बंटन

(4) इनमें से कोई नहीं

92. यदि परिक्षेपण आव्यूह
$$\Sigma = \begin{pmatrix} 6 & -3 & 0 \\ -3 & 6 & 0 \\ 0 & 0 & 3 \end{pmatrix}$$
 के साथ X एक त्रि-विमीय यादृच्छिक सदिश है, तो

प्रथम मुख्य घटक द्वारा स्पष्ट की गई विचरणता का अनुपात निम्न से दिया जाता है:

(1) 65%

(2) 60%

(3) 80%

(4) 62%

- 93. रैखिक प्रोग्रामन है एक :
 - (1) अवरोधी इष्टतम तकनीक
 - (2) सीमित संसाधनों के आर्थिक आबंटन के लिए तकनीक
 - (3) गणितीय तकनीक
 - (4) उपर्युक्त सभी

PHDS	TAT		(41)	(P-30)
	(4)	उपर्युक्त में से कोई नहीं		
	(3)	पद्धति और पंक्ति में इंतजार के लिए	, व्यती	त किया गया औसत समय
	(2)	प्रतिशत कार्यहीन समय		
	(1)	उपयोगिता कारण		
	अभि	लक्षणिक नहीं है ?		
98.	निम्न	लिखित में से कौन एक पंक्तिबद	द्घ पद्ध	रित के लिए, एक मुख्य संकारक (संचालन)
	(4)	उपर्युक्त सभी		
	(3)	सेवा दर आगमन दर से तीव्र होती है	<u></u>	
	(2)	पद्धति की धारिता अपरिमित होती है	1	
	(1)	आगमन वाले परस्पर स्वतंत्र होते हैं।		
97.	कॉलि	ांग (बुलाती) समष्टि को अपरिमित प	रिकल्	पत किया जाता है, जब :
	(3)	दोनों (1) और (2)	(4)	न तो (1) और न ही (2)
	(1)	ग्राहक समष्टि	(2)	आगमन की प्रक्रिया
96.	पंक्ति	बद्ध पद्धति में किस अभिलक्षण का	अनुप्रयो	ग किया जाता है ?
	(3)	$(n!)^n$ हल	(4)	<i>n</i> हल
	(1)	n! हल	(2)	(n-1)! हल
95.	यदि	n कार्यकर्त्ता हैं और n कार्य हैं, तो	वहाँ	होंगे :
	(3)	$z_j - c_j = 0$	(4)	$z_j \leq 0$
	(1)	$z_j - c_j \geq 0$	(2)	$z_j - c_j \le 0$
	सभी	मान :		
94.	अधि	कतमीकरण रैखिक प्रोग्रामन मॉडल वं	ने लिए	, सिम्पलेक्स विधि समाप्त कर दी जाती है, जब

- 99. एक पंक्तिबद्ध पद्धित के आर्थिक विश्लेषण के लिए, निम्नलिखित में से कौन-से लागत आकलन और प्रदर्शन मापक उपयोग नहीं किए जाते हैं ?
 - (1) प्रति सर्वर प्रति समय इकाई लागत
 - (2) पद्धति में इंतजार कर रहे एक ग्राहक के लिए प्रति समय इकाई लागत
 - (3) पद्धति में ग्राहकों की औसत संख्या
 - (4) पद्धति में ग्राहकों का औसत इंतजार करने का समय
- 100. असाइनमेंट (कार्यभार) समस्या को यातायात समस्या की एक विशिष्ट स्थिति माना जाता है, क्योंकि:
 - (1) पंक्तियों की संख्या स्तंभों की संख्या के बराबर होती है।
 - (2) सभी $X_{ij} = 0$ या 1 हैं।
 - (3) सभी रिम प्रतिबंध 1 हैं।
 - (4) उपर्युक्त सभी

Space for Rough Work रफ कार्य के लिए

Space for Rough Work रफ कार्य के लिए